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ABSTRACT 

The purpose of t h i s  s tudy w a s  t o  (1) determine t h e  l o c a l  heat  f l u x  values 

i n  f i l m  bo i l i ng  i n  a sa tura ted  l i q u i d  on a plane v e r t i c a l  surface i n  the  t u r -  

bulent  regime, (ii) extend the  region of laminar vapor flow through t h e  use 

of a drop tower, (iii) gain a n  understanding of  t he  nature and influence of 

liquid-vapor i n t e r f a c i a l  o s c i l l a t i o n s  on hea t  t r a n s f e r  rates, and ( iv )  model 

and analyze t h e  phenomenon of f i l m  bo i l ing  on a v e r t i c a l  surface t o  pred ic t  

heat  t r a n s f e r  r a t e s  as a funct ion of height and surface superheat. 

The var iab les  s tudied i n  the  determination of t h e  l o c a l  hea t  f l u x  values 

were the  height  of t he  hea t ing  surface and hea ter  surface superheat i n  two 

cryogenic l iqu ids ,  nitrogen, and hydrogen. To avoid edge e f f e c t s  i n  a f i n i t e  

plane v e r t i c a l  surface,  cy l ind r i ca l  heat ing surfaces  were used. Heat f l u x  

values a t  11 loca t ions  over a t o t a l  height of 6 i n .  a t  four  values of surface 

superheat were determined, employing a t r ans i en t  technique, A w a r m  cy l ind r i -  

c a l  heating surface w i t h  thermally insu la ted  instrumented sect ions w a s  i m -  

mersed i n  the cryogenic f l u i d ,  inducing f i l m  boi l ing,  and t h e  r a t e  of cooling 

w a s  recorded. From th is  r a t e  of cooling and proper t ies  of t h e  t e s t  sect ions,  

hea t  t r a n s f e r  r a t e s  were computed, 

The region of laminar vapor f i l m  was extended by reducing g rav i ty  forces  

i n  a drop tower. Local hea t  f l u x  values a t  s ix  loca t ions  i n  a height of 4 i n .  

were determined f o r  one value of surface superheat each i n  l i q u i d  ni t rogen and 

l i q u i d  hydrogen a t  a /g  ?Z 0.008. 

under subcooled conditions. 

Additional hea t  f l u x  values were obtained 

x iv  



Motion p ic tures  of f i l m  bo i l i ng  on a v e r t i c a l  cy l ind r i ca l  surface i n  

l i q u i d  ni t rogen were taken a t  four  d i f f e r e n t  heights  of the surface and three 

values of surface superheat. Analyses of these motion p ic tures  ind ica t ing  

the  va r i a t ion  of vapor f i l m  thickness  as a funct ion of time, and the  ex ten t  

of i n t e r f a c i a l  o sc i l l a t ions ,  a r e  presented. 

Film bo i l ing  was modelled on the  assumption that  the  universa l  ve loc i ty  

p r o f i l e  of Spalding i s  valid everywhere i n  t h e  vapor region. It i s  shown t h a t  

i n t e r f a c i a l  o s c i l l a t i o n s  increase heat  t r a n s f e r  r a t e s  and the e f f e c t  of such 

increase i s  taken i n t o  account i n  t h e  so lu t ion  of the r e s u l t i n g  equations. 

Solutions a r e  presented based on the e f f e c t  of such o s c i l l a t i o n s  being con- 

s t a n t  a t  a l l  heights  and a l s o  considering the  va r i a t ion  of t h e  extent  of i n -  

t e r f a c i a l  o s c i l l a t i o n s .  

The data presented show an  i n i t i a l  decrease i n  t h e  heat  f l u x  with height 

and a gradual increase after reaching a minimum value. These experimental 

values show considerable deviation, both quan t i t a t ive ly  and qua l i ta t ive ly ,  

from t h e  laminar ana lys i s  predict ions of heat  t r a n s f e r  r a t e s .  These depar- 

t u re s  a r e  explained on the  basis o f  onset of turbulence and i n t e r f a c i a l  o s c i l -  

l a t i o n s .  The so lu t ion  t o  the  s e t  of equations tak ing  these e f f e c t s  i n to  

account are shown t o  pred ic t  heat  t r a n s f e r  r a t e s  within + - 15% i n  the turbulent  

regime. 

behavior as laminar predict ions but  a r e  cons is ten t ly  higher.  

The hea t  t r ans fe r  r a t e s  underreduced g rav i ty  forces  show the  same 



CHAPTER I 

INTRODUCTION 

A. Purpose and Scope 

Boiling has been known f o r  centur ies ,  b u t  i t  i s  only i n  the  pas t  few de- 

cades t h a t  ser ious s tud ies  a r e  being made t o  understand t h i s  phenomenon. 

Surface bo i l ing  i s  general ly  c l a s s i f i e d  as nucleate bo i l ing  where the  l i q -  

uid surrounding the  heat ing surface makes repeated contact with the  surface.  

This i s  characterized by vapor bubbles emanating from the  surface.  In  f i l m  

bo i l ing  t h e  heat ing surface i s  blanketed by a vapor f i l m  and, i n  general ,  no 

bubbles emanate from the surface.  I n  the  t h i r d  regime-the t r a n s i t i o n  regime- 

the re  i s  p a r t i a l  nucleate boi l ing  and p a r t i a l  f i l m  boi l ing,  both taking place 

a l t e r n a t e l y  or simultaneously a t  d i f f e ren t  pa r t s  i n  the  surface.  This t r a n s i -  

t i o n  boi l ing  i s  unstable f o r  an imposed heat  f l ux  and e i t h e r  nucleate or f i l m  

bo i l ing  i s  establ ished.  

Nucleate boi l ing  i s  the more a t t r a c t i v e  mode of heat  t r ans fe r  i n  boi l ing  

as it i s  character ized by l a rge  r a t e s  of heat  t r ans fe r  ( r e l a t i v e  t o  f i l m  bo i l -  

ing)  a t  low degrees of superheat of t h e  heat ing surface.  There e x i s t s  an i m -  

mense amount of l i t e r a t u r e  on d i f f e r e n t  aspects  of nucleate boi l ing,  both an- 

a l y t i c  and experimental. 

While i n  the majori ty  of appl icat ions,  nucleate boi l ing  i s  the desired 

mode, there  a re  important appl icat ions,  p a r t i c u l a r l y  with the increasing use 

of cryogenic f lu ids  i n  space appl icat ions,  where f i l m  bo i l ing  occurs. It oc- 

curs during cool down of cryogenic containers and i n  quenching of metals. 

1 
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Fai lure  of nuclear reac tor  f u e l  elements may a l s o  lead  t o  f i l m  bo i l ing .  

there  a r e  some technica l ly  important areas where f i l m  bo i l i ng  occurs but  rela- 

t i v e l y  l i t t l e  work has been done on t h i s  aspect  of bo i l ing .  

Thus 

Most of t he  ex- 

perimental da ta  reported on f i l m  bo i l i ng  a r e  f o r  small diameter horizontal  

tubes or spheres. 

The purpose of t h e  present study i s  t o  determine experimentally the  l o c a l  

heat t r a n s f e r  r a t e s  i n  f i l m  bo i l ing  on a v e r t i c a l  surface.  A t r ans i en t  tech- 

nique i s  employed and l o c a l  heat  t r ans fe r  r a t e s  a re  determined as a function of 

height and AT = ( T  -T ) i n  l i qu id  ni t rogen and l i q u i d  hydrogen. It was 

observed t h a t  most ava i lab le  cor re la t ions  based on a laminar vapor film with 

w a l l  sat 

a smooth in t e r f ace  predicted heat t r a n s f e r  r a t e s  which were much too  low, 

pa r t i cu la r ly  with increasing height.  Visual observation of f i lm boi l ing  in- 

dicated t h a t  t h e  in t e r f ace  w a s  f a r  from being steady and had osc i l l a t ions  of 

considerable amplitude. To obtain data  on t h e  nature of t he  in t e r f ace  and t h e  

vapor film thickness,  motion p ic tures  a r e  taken with a high-speed camera. A l -  

though predict ions based on a laminar vapor f i l m  a r e  found t o  be t o o  low, it 

may be expected t h a t  t he re  i s  some region near the  leading edge where t h e  con- 

d i t i ons  of laminar vapor f i lm  with a s teady in t e r f ace  a r e  s a t i s f i e d .  In order 

t o  examine t h e  v a l i d i t y  of such an expectation, the  region of v a l i d i t y  of l a m -  

i na r  flow i s  extended by reducing gravi ty  forces  i n  a drop tower and l o c a l  

heat t r a n s f e r  r a t e s  determined. Additional l imi ted  d a t a  a r e  obtained on 

heat t r ans fe r  rates i n  f i lm  boi l ing  i n  subcooled l i qu id  nitrogen and Jiquid 

hydrogen a 
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There a r e  two aspects  of f i l m  boi l ing which render modelling of t h e  phe- 

nomenon d i f f icu l t - the  possible  onset of turbulence i n  t h e  vapor f i lm  and the  

o s c i l l a t i o n s  a t  t h e  liquid-vapor in te r face ,  both of which tend t o  increase the  

heat t r a n s f e r  rates compared w i t h  film boi l ing  i n  laminar flow with a s teady 

in te r face .  Some researchers  have attempted: t o  def ine a parameter t o  charac- 
I 

t e r i z e  the  t r a n s i t i o n  from laminar t o  turbulent  flow. However, t he re  i s  no 

evidence t o  support t h e  value of t h e  parameter s o  used. Moreover, it i s  t o  

be expected that such a t r a n s i t i o n  i s  gradual  and not  sudden. I n  t h e  present 

analysis ,  no attempt i s  made t o  define,  i n  precise  terms, the  ex ten t  of the  

laminar region and any parameter t o  ind ica te  t r a n s i t i o n  t o  turb2lence. In- 

stead, the ve loc i ty  f i e l d  throughout the  region i s  approximated by Spalding's 

universal  ve loc i ty  p r o f i l e  which gives a l i n e a r  ve loc i ty  d i s t r i b u t i o n  fo r  th in  

f i l m s  and a logarithmic ve loc i ty  p r o f i l e  f o r  t h i ck  f i l m s  when it can be ex- 

pected t o  be turbulent .  

i t  w i l l  be shown t h a t  any osc i l l a t ions  i n  the vapor-liquid in t e r f ace  w i l l  in- 

crease t h e  average hea.t f lux .  From the  motion p ic tures ,  it i s  establ ished 

tha t  considerable osc i l l a t ions  do e x i s t  and hence t h e  heat  t r a n s f e r  rates a r e  

higher than i s  expected f o r  t h e  case w i t h  a smooth, steady in te r face .  The 

extent  of such increase i n  heat t r a n s f e r  w i l l  be shown to be dependent on the 

r a t i o  of t he  amplitude of o s c i l l a t i o n  t o  the mean vapor film thickness.  No 

known method e x i s t s  t o  pred ic t  t h e  extent  of such o s c i l l a t i o n s .  However, two 

d i f f e ren t  approaches w i l l  be taken t o  f ind  t h e  value of t he  r a t i o  of t h e  heat 

t r a n s f e r  with i n t e r f a c i a l  o s c i l l a t i o n s  so t h a t  with a steady in te r face ,  (1) an 

empirical  one wherein t h e  value of t h i s  r a t i o  which b e s t  f i t s  the  experimental 

With the  assumption of unchanging temperature p r o f i l e ,  
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data  i s  used i n  t h e  so lu t ion  of equations obtained i n  the  present analysis ,  and 

( 2 )  a semi-empirical one whereby the  value of t h i s  r a t i o  i s  assumed t o  vary 

with the  l o c a l  Reynolds number and an attempt made t o  f ind  t h i s  va r i a t ion  from 

t h e  r e s u l t s  of t he  photographic s tud ies .  

B. LITERATURE SURVEY 

The phenomenon of f i lm  boi l ing  on v e r t i c a l  surfaces  i.s, i n  many respects ,  

similar t o  t h a t  of f i l m  condensation and hence references t o  some of t he  works 

on condensation relevant  t o  the present study a r e  included. 

Nusselt (1)* developed an expression f o r  heat  t r a n s f e r  i n  f i l m  condensa- 

t i o n  on v e r t i c a l  surfaces ,  assuming laminar flow of the condensate f i l m .  Ne- 

g l ec t ing  the aceelerahion terms i n  t h e  momentum equakion and asssming zero 

shear s t r e s s  a t  the  condensate-vapor in te r face ,  he obtained a parabol ic  ve- 

l o c i t y  d i s t r ibu t ion  f o r  the  condensate f i l m .  Again neglect ing the  convective 

terms and conduction p a r a l l e l  t o  t h e  surface i n  t h e  energy equation, a l i n e a r  

temperature d i s t r ibu t ion  was obtained; with these  assumptions the following 

expressions f o r  t he  l o c a l  and average heat  t r ans fe r  coe f f i c i en t s  were obtained. 

*Numbers i n  parentheses r e f e r  t o  references i n  the Bibliography. 
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Rohsenow (2)  improved Nusse l t ' s  model by considering the nonl inear i ty  of  

temperature d i s t r i b u t i o n  but r e t a in ing  t h e  same flow model. The ca lcu la t ion  

i s  based on an i t e r a t i v e  process and t h e  expressions f o r  the  hea t  t r a n s f e r  

coef f ic ien t  d i f f e r s  from t h a t  given by Nusselt only i n  t h a t  t he  enthalpy of 

vaporization i s  corrected t o  

i n  the  f i r s t  i t e r a t i o n  and t o  
- 

C AT 

10 h ' = h P- h " 

fg - 
f g fg 

i n  the  second i t e r a t i o n  process.  

Sparrow and Gregg (3) fu r the r  improved the so lu t ion  by considering the ac- 

ce l e ra t ion  and convective t e r m s  i n  the momentum and energy equations; the boun- 

dary l aye r  equations a r e  numerically solved a f t e r  f irst  reducing them t o  or-  

dinary d i f f e r e n t i a l  equations through s i m i l a r i t y  transformations; zero i n t e r -  

f a c i a l  shear was  assumed. Their r e s u l t s  a r e  i n  agreement w i t h  those of Rohsenow 

(2)  and show t h a t  f o r  Pr 

i s  very small. However, t h e  departure from Nusse l t ' s  so lu t ion  becomes s i g n i f i -  

cant f o r  Pr < 0.003 and values of t he  parameter C AT/h > 0.001. Koh (4 )  has 

given a so lu t ion  t o  the  condensate problem using i n t e g r a l  methods; it i s  shown 

t h a t  t h i s  solut ion i s  within 5% of t h a t  obtained by solving the  boundary layer  

> 1, the  e f f e c t  of  neglecting the accelerat ion terms 
R 

R P fg  
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equations. Koh, Sparrow, and Hartnet t  ( 5 )  f u r t h e r  improved the so lu t ions  by 

solving t h e  boundary l aye r  equations for both t h e  condensate and the vapor 

with appropriate boundary conditions a t  the  in t e r f ace ,  v iz . ,  compatibil i ty 

of u, v, and &/dy f o r  both the  l i q u i d  and t h e  vapor a t  t h e  in t e r f ace .  Sim- 

i l a r i t y  techniques reduce t h e  s e t  of nonlinear par t ia l  d i f f e r e n t i a l  equations 

t o  ordinary d i f f e r e n t i a l  equations, which are solved numerically. Results of 

t h e  so lu t ion  f o r  t h e  l o c a l  Nusselt number a r e  tabula ted  as a function of t h e  

parameters Pr  D ~ p ) ~ / ( p p )  ]1'2 , and C AT/h . It i s  shown t h a t  (i) i n t e r -  
1' V P fg 

f a c i a l  shear has almost no e f f e c t  on heat t r a n s f e r  f o r  Pr 

f a c i a l  shear i s  important f o r  l i q u i d  metals which have very low Pr < 0.01, 

and (iii) t h e  heat  t r a n s f e r  i s  r e l a t i v e l y  unaffected by the  magnitude of the  

> 10, (ii) i n t e r -  
R 

R 

Bromley (6)  assumed a model f o r  laminar f i l m  bo i l i ng  on v e r t i c a l  surfaces 

similar t o  t h a t  of Nusselt f o r  condensation and obtained the  following expres- 

s ions f o r  the  average heat t r a n s f e r  coe f f i c i en t  

Pv (PR-Pv)g hfg '  c 
L ( T  -T ) Pr w ' s  

h_ = const ,  
L 

and 

hL Ti - = const ,  k 
V 

1/4 

The value of t h e  constant depends on whether zero i n t e r f a c i a l  v e l o c i t y  o r  zero 

i n t e r f a c i a l  shear i s  assumed. Experimental data obtained from horizontal  tubes 

were given i n  support of t h e  hypothesized model. Agreement between the p r e d i r t i c n s  
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and experimental results is reasonably good for small diameters. Allowance for 

radia.tion effects were made. In a subsequent work Bromley (7) has given a deri- 

vation for the use of modified enthalpy of vaporization in the above equation. 

The modified enthalpy of vaporization is given as 

Following the pattern of development of the film condensation problem, Mc- 

Fadden and Grosh (8) improved this solution by solving the boundary layer equa- 

tions for the vapor with the approximation of zero interfacial velocity. Koh 

(9) has shown tha,t this approximation is satisfactory, for values of the param- 

eter 1 (pb) / (pp)  ]1’2 << 1, which is satisfied under most conditions. Cess (10) 

solved the same problem by employing integral methods. Koh- (9) treated it as 

a two-domain problem, applying the boundary layer equations to both the vapor 

film and the adjacent saturated liquid. The boundary conditions for velocity 

r 

- v  I 

and shear stress for the two domains were matched at the liquid-vapor interface. 

Using sinilarity transformation, a set of ordinary differential equations were 

obtained and these were solved numerically to obtain the dimensionless velocity 

and dimensionless temperature (T-T )/(T -T ) for various values of the parameters 

[ (pp)v/(pp)I]1’2, C AT/h 

S w s  

and Pr. From the results of these calculations, it 
P fg 

is concluded that (i) a decrease in the value of the parameter [ (pp) /(pb) ] 1/2 
v I 

The assumption of zero interfacial ve- decreases the hea.t transfer rate. 

locity is valid for a fluid with small [(pp) / (pp)  ]1’2e 

(ii) 

(iii) The effect of 
V I 
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vapor Prandt l  number on heat  t r ans fe r  i s  small f o r  t h i n  vapor f i l m s  but s i g n i f i -  

cant for  t h i ck  films. 

( i v )  

as C AT/h 

vapor f i l m  and the  nonl inear i ty  increases  as the vapors f i l m  thickness increases.  

Vapor f i l m  thickness i s  denoted by the  parameter C AT/h e 

P fg 

The heat  t r a n s f e r  drops gradually t o  a minimum value and then r i s e s  again 

increases .  (v) The temperature p r o f i l e  i s  qu i t e  l i n e a r  f o r  a t h i n  
P fg  

The e f f e c t  of a subcooled l i qu id  with f i l m  bo i l ing  has been studied by 

several  workers. 

i n  the so lu t ion  of t h e  boundary l aye r  equations. 

i n t e r f a c i a l  ve loc i ty .  This w a s  subsequently improved by Nishikawa and I t o  (12) 

who dropped the  assumption of zero i n t e r f a c i a l  ve loc i ty  and used matching boun- 

dary conditions a t  t he  in te r face .  

e s s e n t i a l l y  s imi la r ,  and the  main d i f fe rence  i s  i n  t h e  addi t ion of one more 

energy equation f o r  t he  subcooled l i qu id .  The r e s u l t s  show t h a t  with an in-  

crease i n  the  degree of  subcooling, t he  r a t e  of heat  t r a n s f e r  r i s e s ;  the  per- 

centage increase of heat f l ux  i s  g rea t e r  f o r  a lower degree of heater  surface 

superheat. Frederking (13) approximates vapor and l i qu id  ve loc i ty  p r o f i l e s  

and the  vapor temperature p r o f i l e  with polynomials, employing i n t e g r a l  methods 

t o  obtain the heat t r ans fe r  r a t e .  S i m i l a r  methods have been employed by 

Frederking and Hopenfield (14)  fo r  the  subcooled case. 

propert ies  has been included i n  t h e  ana lys i s  of McFadden and Grosh (l>), who 

solved the  boundary l aye r  equation through s i m i l a r i t y  transformations,  

Tachibana and Fukui (16) have given a solut ion t o  f i l m  bo i l ing  i n  subcooled 

l i q u i d s  using in t eg ra l  methods. 

h i s  ana lys i s .  

Sparrow and Cess (11) employed the same techniques a s  Koh ( 9 )  

However, they assumed zero 

This  solut ion and t h a t  given by Koh ( 9 )  a re  

The e f f e c t  of var iab le  

Lubin (17) includes e f f e c t s  of r ad ia t ion  i n  



It has been recognized (13) t h a t  laminar film boi l ing  occurs r a the r  in-  

frequently as compared with turbulent  f i lm boi l ing .  

stagnation poin ts  and on small objec ts  under normal conditions.  

t a l  data of Bromley (6) and others ,  obtained mainly f o r  small hor izonta l  diam- 

e t e r  tubes, a r e  sometimes used i n  support of a n a l y t i c a l  solut ions.  

perimental data a r e  ava i lab le ,  these solut ions do not show any s ign i f i can t  i m -  

provement i n  the predict ions over t he  so lu t ion  of Bromley (6) ;  where these 

solut ions show not iceable  departure from t h a t  of Bromley (6) no experimental 

data a re  avai lable .  

It occur s ' a t  leading edges, 

The experimen- 

Where ex- 

Merte and Clark (18) obtained experimental data f o r  both the  f i l m  and 

nucleate boi l ing  i n  l i q u i d  nitrogen a t  standard and f r a c t i o n a l  g rav i ty  using 

1 in .  and 1/2 in .  d i a  copper spheres. Rhea and Nevins (19) studied the  e f -  

f e c t s  of o s c i l l a t i o n s  of a sphere i n  f i l m  bo i l ing .  Hendricks and Baumeister 

(20) have given an a n a l y t i c a l  so lu t ion  f o r  f i l m  bo i l ing  on submerged spheres. 

Chang (21,22) has attempted t o  use the wave theory, t o  pred ic t  heat 

t r ans fe r  r a t e s  i n  film boi l ing  on hor izonta l  and v e r t i c a l  surfaces.  The con- 

cept o f  Taylor-Helmholtz i n s t a b i l i t i e s  has been applied t o  f i lm boi l ing  on a 

horizontal  surface by Berenson (23). 

tubes on f i l m  bo i l ing  heat  t r a n s f e r  was  s t u d i e d  by Breen and Westwater (24). 

From t h e i r  experimental da ta  they show that  f o r  a given AT, heat  t r ans fe r  

r a t e s  rap id ly  decrease with increase i n  diameter, reach a minimum, then slowly 

increase w i t h  diameter. 

the  minimum heat flux) i s  independent of t he  AT. 

have applied Taylor i n s t a b i l i t y  approach t o  f i l m  bo i l ing  on hor izonta l  plates. 

The e f f e c t  of the diameter of hor izonta l  

They a l s o  i n f e r  t h a t  t h i s  c r i t i c a l  diameter (having 

Hosler and Westwater (24) 
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Experimental s t u d i e s  of t he  e f f e c t s  of increasing gravi ty  on f i lm bo i l -  

ing on a hor izonta l  tube have been reported by Pomerantz (26) who concludes 

t h a t  the  f i l m  bo i l ing  mechanism for a hor izonta l  tube i s  dependent on the  r a t i o  

of t he  diameter t o  the  c r i t i c a l  wavelength, and r epor t s  nominal l/3 power de- 

pendency of heat f l ux  on l o c a l  gravi ty .  An ana lys i s  of laminar flow of f i l m  

bo i l ing  from a hor izonta l  wire has been given by Baumeister and H a m i l l  (27). 

They conclude t h a t  t h e  hea t  t r ans fe r  coe f f i c i en t  i s  a function of grav i ta -  

t i o n a l  acce lera t ion  t o  the  0.375 power fo r  la rge  wires and t o  t h e  zero power 

for  very small wires. 

A number of other s tud ies  dea l  with pa r t i cu la r  aspects of f i l m  boi l ing,  

such as f i l m  bo i l ing  i n  a forced convection boundary layer  flow by Cess and 

Sparrow ( 2 8 ) ,  f i l m  bo i l ing  of l i q u i d  nitrogen from porous surfaces  with vapor 

suction by Pai  and Bankoff (29 ) ,  f i l m  bo i l ing  of saturated nitrogen flowing 

i n  a v e r t i c a l  tube by Laverty and Rohsenow (3O), s lug  flow and f i l m  bo i l ing  

of hydrogen by Chi (3l), e f f e c t s  of i n t e r f a c i a l  i n s t a b i l i t y  on f i l m  bo i l ing  

of saturated l i qu id  helium I I above a hor izonta l  surface by Frederking, Wu 

and Clement ( 3 2 ) ,  r ad ia t ion  e f f e c t s  by Sparrow (33) and Yeh and Yang (34), 

s t a b i l i t y  of f i lm boi l ing  two-phase flow i n  cryogenic systems by ?h-ederking 

( 3 5 ) .  

From t h e  above references,  i t  i s  seen t h a t  t he re  a re  a number of analyses 

f o r  f i l m  bo i l ing  from v e r t i c a l  surfaces.  However, there  i s  very l i t t l e  or no 

d a t a  i n  support of such analyses.  A s  has a l ready been pointed out e a r l i e r ,  

t h e  phenomena of laminar f i lm boi l ing  with a smooth in te r face  i s  r a r e l y  ob- 

served, and i n  t h e  majority of cases t h e  in t e r f ace  i s  o s c i l l a t i n g  and t h e  
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flow apparently not laminar. Considerable deviation has been observed between 

such predictions and experimental results. However, to date there appears to 

be very little reported work which takes into account the effects of turbulence 

and interfacial oscillations. 

Rohsenow, Weber, and Ling (36) made a study of heat transfer coefficients 

for film condensation in the turbulent regime, hypothesizing that the onset of 

turbulence would occur at a given vstlue of 4l?/p. 

Reynolds number of 1800 for the onset of turbulence, but much lower values of 

McAdams (37) gives a critical 

200-300 have been reported. Using the following model, similar to the three- 

layer model of Karman-Martinelli-Boelter, 

U+ = y+ 

u+ = -3.05 + 5.0 In Y+ 

0 5 Y + < 5  

+ + + 
u = 5.5 + 2 * 5  In y 

with u+ = u / q ,  y+ = 
V "  

= liquid film 

and a transition criterion 

ties for momentum and heat 

n 

thickness 

of 4r/p, = 1800 and assuming that the eddy diffusivi- 

are equal, Rohsenow (36) obtained 

(1. lo) 

Here F is defined as, 
2 
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+ 
F O ~  y < 30 , 

0 

L2 

l n  (1.11) 

(1.12) 

Lee (38) took a s l i g h t l y  d i f f e ren t  approach. Using Diessler ’ s  expression 

fo r  e d d y  v i scos i ty  (53), he assumed that  the  eddy thermal d i f f u s i v i t y  i s  a 

constant multiple of eddy kinematic v i scos i ty .  Bradfield, Barkdoll, and Byrne 

(42) report  some data on na tu ra l  convection f i lm  boi l ing  i n  l i qu id  nitrogen on 

the surface of torpedo shaped body a t  a height of 2.69 i n .  

shown t o  agree within i- 32% of the  predict ion of Hsu and Westwater (39). 

These r e s u l t s  are 

How- 

ever, no de t a i l s  are given as t o  how t h e  l o c a l  heat f lux  measurements were 

made, nor on the  manner of i s o l a t i n g  t h a t  sect ion from adjoining p a r t s  of the  

body. 

Hsu ( 3 9 )  reported ana ly t i ca l  and experimental s tud ies  on turbulent  f i lm 

boi l ing  on a v e r t i c a l  surface.  He postulated a two-layer model which was es-  

s e n t i a l l y  a s implif ied vers ion of Karman’s three-layer model re fer red  t o  above 

with a viscous sublayer where U+ = y+ f o r  y+ - < 10 and beyond t h i s  a uniform 

ve loc i ty  i n  the turbulent core. The temperature p r o f i l e  w a s  l i n e a r  i n  the 



viscous sublayer and uniform i n  t h e  turbulent  core. For t he  two-layer model it 

was assumed t h a t  u+ = y' f o r  y 

and y+ a t  the  t r a n s i t i o n  from viscous sublayer t o  turbulent  core we have 

(3'') evaluated a t  y' = 10 i s  the l o c a l  Reynolds 

number based on the m a x i m u m  ve loc i ty  and the  sublayer thickness.  It was hy- 

pothesized t h a t ,  s ince  the  Reynolds number based on the sublayer thickness de- 

termines the  boundary between the  viscous sublayer and the  turbulent  core, using 

an a r b i t r a r y  c r i t i c a l  Reynolds number o f  100, the  flow would become t u r b u l i h t ,  

when the  Reynolds number formed by taking the  maximum veloc i ty  and the  f i l m  

thickness i n  the  laminar region, near t he  leading edge, became 100. With t h i s  

assumption, a force balance w a s  made on an element of turbulent  core,  taking 

i n t o  account the  g rav i ty  forces,  the shear forces  on the  sublayer and approxi- 

+ = 10. Because of t h e  r e l a t ionsh ip  between us 

2 + +  - + 2  
= (y  u ) - uy/v; then ( y  ) 

mating the  shear force a t  t h e  in te r face  by the  use of a f r i c t i o n  factor:  A s  

adequate data on such f r i c t i o n  f ac to r s  itre not  ava i lab le  values of f r i c t i o n  

fac tors  f o r  vapor-liquid in t e r f ace  fo r  water and a i r  given by Henratty and 

Engen (40) were used. Solution t o  t h e  r e su l t i ng  momentum and energy equations 

give 

f pvpv Re* k AT k AT 
- B =  + 
pv 
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The average heat t r a n s f e r  coef f ic ien t  over t he  e n t i r e  height of the heating sur- 

face i s  then obtained by in tegra t ing  the  lo 'cal  hea t  t r ans fe r  coef f ic ien t ,  using 

Bromley's r e s u l t s  for  t h e  laminar region. The r e su l t i ng  expression i s  

3 / 2  
- =  B + 1/3 fg  + 
hL L 2 h pv Re* 

3k AT A 
V V 

k 

(1.18) 

Here L i s  the  height over which laminar vapor film preva i l s .  Experimental da ta  

were obtained using tubes of length  from 2 in .  t o  6-1/4 i n .  and 1/2 in .  O.D.  

0 

t o  3/4 i n .  O.D. i n  methenol, benzene, carbon te t rachlor ide ,  nitrogen, and argon. 

The d a t a  so obtained a r e  shown t o  agree within 32% of the  predicted values. 

Borishansky and Fokin (41) a r r ived  a t  t h e  following expressions based on 

dimensional reasoning: 

Film Thickness : 

(1.19) 

using experimental r e s u l t s  from other  sources, a value of 3lwas assigned t o  t h e  

consta.nt i n  the  above equation and the  form of the  function F as 

(1.20) 



Nusselt Number based on film thickness: 

The following empirical expressions were given for the Nusselt number: 

Nu = 0.28 
6 

6 < 1.6 x 10 for 2 x 10 < Ga - 4 -% 

where 

(1.21) 

(1.22) 

This parameter corresponds to Grashoff number in natural convection. 



CHAPTER I1 

EXPERIMENTAL APPARATUS 

The data  t o  be obtained f o r  t h e  present study were loca l  heat f l u  values 

a t  d i f f e r e n t  values of surface superheat both under normal and reduced gravi ty  

conditions, and values of vapor f i l m  thickness as a function of time f o r  an 

understanding of t h e  nature of the  vapor f i l m .  

To obtain l o c a l  heat t r a n s f e r  rates, it was decided t o  employ a t r a n s i e n t  

technique. 

body i n  a r e l a t i v e l y  cold l i q u i d  s o  t h a t  f i l m  bo i l ing  was induced, and measure 

the  time r a t e  of change of temperature of the  immersed body, 

t u r e  d i s t r i b u t i o n  of t h e  body i s  known'ass a function of time, t h e  r a t e  of 

change of enthalpy gives the  heat t r a n s f e r  r a t e s .  

The general  nature of the technique adopted was t o  i m e r s e  a w a r m  

If t h e  tempera- 

This t r a n s i e n t  technique has several  advantages, as compared with steady 

s t a t e  techniques. The main advantage of the t r a n s i e n t  technique i s  i t s  s i m -  

p l i c i t y ,  By i n s t a l l i n g  thermocouples as needed i n  the t e s t  pieces,  the  r a t e  

of cooling can be recorded as a function,of time. Steady s t a t e  techniques t o  

determine the l o c a l  heat f lux ,values would require,  i n  addition t o  thermo- 

couples t o  monitor the  temperatures, comparatively elaborate  s e t  up of indi-  

vidual heating elements i n  every sect ion of the  t e s t  piece. 

technique would enable data  t o  be obtained even i n  the  t r a n s i t i o n  regime from 

The t r a n s i e n t  

f i l m  t o  nucleate boi l ing  where steady s t a t e  techniques have proved d i f f i c u l t  

because of t h e  unstable nature of the  t r a n s i t i o n  regimee To obtain data under 

16 



reduced g rav i ty  conditions i n  a drop tower, where t h e  drop u s u a l l y  takes  a few 

seconds, t r ans i en t  techniques a r e  preferred as steady s t a t e s  can be achieved 

only with t e s t  surfaces  of negl igibly small heat  capacity.  This t r ans i en t  

technique has been successful ly  employed f o r  obtaining boi l ing  data under d i f -  

fe ren t  conditions of grav i ty  forces,  pressures and subcooling i n  l i qu id  ni t rogen 

and l i qu id  hydrogen (18> 54) e 

To determine t h e  l o c a l  heat f l u  values a s  a function of temperature, i n  

f i l m  bo i l ing  i n  cryogenic l i qu ids ,  a su i t ab ly  instrumented t e s t  surface with 

thermally i so l a t ed  t e s t  sect ions was used, along with appropriate dewars f o r  

the cryogenic l iqu ids .  For measuring the  vapor f i l m  thickness a s  a funct ion 

of time, it was decided t o  adopt photographic methods which would produce 

motion p ic tures  a t  a high speed. A t e s t  surface with a constant,  and uniform 

control led surface temperature was used f o r  experimental s implif icat ion.  For 

t h i s  it was necessary t o  have a high-speed camera with associated a u x i l i a r i e s  

and a dewar with plane t ransparent  windows. 

The t e s t  surfaces, t he  dewars, and photographic equipment used f o r  t he  

present study are  described i n  the succeeding paragraphs. 

A. Heating Surfaces 

To obtain heat f l u x  versus wal l  superheat data,  t e s t  surfaces  were con- 

s t ructed of oxygen-free high-conductivity copper. The choice of t h i s  mater ia l  

was based on i t s  high thermal d i f f u s i v i t y  which would permit using lumped anal- 

y s i s  (Appendix D )  i n  t he  ca lcu la t ion  of heat f lux ,  thus permitt ing the  use of 
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j u s t  one thermocouple i n  each t e s t  sect ion,  and i t s  wel l  documented proper t ies  

a t  low temperatures, For photographic s tudies ,  it was necessary t o  have a 

steady s t a t e  tes t  surface; te l lu r ium copper was chosen f o r  t h i s  t e s t  surface 

because of i t s  easy machinabili ty,  

1, HEAT FLUX MEASURING TEST SURFACES 

I n  order t o  avoid edge e f f ec t s ,  cy l ind r i ca l  t e s t  surfaces  were used t o  

simulate plane v e r t i c a l  surfaces.  A t e s t  piece assembly i s  shown i n  Figure 1, 

and the  d e t a i l s  a re  shown i n  Figure 2, The t e s t  piece, Figure 1, consisted of 

t h ree  t e s t  sect ions,  each 1/4 in .  t h i ck  with a hole i n  t h e  center  to pass the  

thermocouple wires ,  Each t e s t  sec t ion  was insu la ted  from the  adjoining spacer 

pieces  with O,OO5 in .  t h i ck  Teflon washers, Heat leakage to t he  adjoining sec- 

t fons  was f u r t h e r  reduced by cu t t i ng  a recess  such t h a t  only a c i r c u l a r  sec- 

t i o n  of 1/16 i n ,  r a d i a l  width would bear i n  between the  sect ions.  

were held together  by two 3/32 in.  diameter s t a i n l e s s  s t e e l  through bol t s ,  

frrsulated from the  copper by winding a 0,001 i n ,  Teflon tape around the  bo l t s ,  

BQiling from t h e  top  and the  bottom of the  t e s t  piece was prevented by mounting 

The sec t ions  

an addi t ioga l  cy l ind r i ca l  piece constructed of 0,001 i n ,  s t a i n l e s s  s t e e l  shim 

stock, The thermocouple wires from t h e  t e s t  sect ions were passed through the  

c e n t r a l  holes, through a l/4 i n .  

t he  top sec t ion  and out of the  tube through a Conax bare wire thermocouple 

gland, 

"co a t tach  the  t e s t  piece t o  t he  cables which ra i sed  and lowered the  t e s t  sur- 

f aces  i n  the  dewar, 

diameter s t a i n l e s s  s t e e l  tube soldered t o  

The s t a i n l e s s  s t e e l  b o l t s  holding the  t e s t  pieces  together  a l s o  served 
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The sec t ions  of the  t e s t  piece were assembled 

the  d i f f e r e n t  sect ions.  The heat ing surfaces  were 

g r i t  emery tape and smoothened with crocus c lo th .  

t o  check the  alignment of 

then sandpapered with 400- 

The surfaces  were f i n a l l y  

polished with jeweler's pol ish t o  obta in  a smooth mirror-,like f in i sh .  

tempt w a s  made t o  quan t i t a t ive ly  measure the  surface roughness, as it has Deen 

es tab l i shed  t h a t  f i l m  bo i l i ng  i s  r e l a t i v e l y  insens i t ive  t o  surface f i n i s h .  

No a t -  

a.  Method of Attaching Thermocouples 

I n  previous work with spheres, thermocouples were at tached t o  the sphere 

by d r i l l i n g  a 0.040 i n .  diameter hole i n  the  sphere t o  the  required depth and 

solder ing the  welded thermocouple junct ion a t  the  bottom of t h i s  hole.  In  t h e  

present s tudy t h i s  method of a t tach ing  thermocouples proved inconvenient as it 

required d r i l l i n g  a small diameter hole  from the  ins ide  of the  r i n g  shaped 

t e s t  s ec t  ion. 

I n  order t o  f i n d  the  most convenient way of a t tach ing  thermocouples con- 

s i s t e n t  with acceptable response, s i x  thermocouples of copper constantan were 

i n s t a l l e d  i n  d i f f e r e n t  ways i n  a tes t  block of OFHC copper measuring 2-1/4 i n .  

wide x 1-1/2 in .  high x 3/4 i n .  t h i ck  as shown i n  Figure 3. 

and 2 were made by welding 30-gauge copper and constantan wires, 

Thermocouples 1 

These were 

Figure 3 .  Different  methods of a t tach ing  thermocouples. 
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then inserted in a hole of 0.055 in, diameter x 1 in. deep in the copper block 

and attached to the block with 50-50 soft solder. Thermocouples 3 and 4 were 

identical and were made by welding the junctions and soldering these to simi- 

lar copper plugs of 1/16 in. diameter x 3/8 in. long. 

by welding the junction, slitting the edge of a 1/16 in. diameter plug, sand- 

wiching the thermocouple junction between the slit ends and mechanically press- 

ing them. 

end of an OFHC plug, It was found that this was mechanically weak; to provide 

the necessary mechanics1 strength, a thin coating of soft solder was applied 

to the junction after welding. These plugs were driven into hole at the bot- 

tom of the copper block, the wires coming out of the top through correspond- 

ing holes as shown. 

Thermocouple 5 was made 

Thermocouple 6 was made by electrically welding the wires to one 

The responses of the various thermocouples were compared by immersing the 

copper block in liquid nitrogen and recording the output of the thermocouples 

on a Sanborn Recorder. The temperature level at which these runs were made 

was 255 OR (-205 O F )  It was found that Thermocouple 4 had the best response 

and the responses of all other thermocouples were compared with that of Thermo- 

couple 4: 

2pv (O.l5OR):, and Thermocouples 3 and 5 by lOpv (O.ToR)o  

Thermocouples 1 and 6 lagged by 5pv (0.35 OR), Thermocouple 2 by 

The time rate of 

change of temperature as measured by Thermocouple 1 was lower by 0.5-1% com- 

pared with that of Thermocouple 2. There were no differences in the measured 

time rate of change of temperatures as recorded by Thermocouples 2, 3, 4, and 

6, 

was an uncertainty of about O,7'F in the measurement of the temperature and 

less than 0.5% in the heat flux measurement due to thermocouple responses. 

Thermocouple 5 measured 4% too low. These results indicate that there 

In the test pieces the thermocouple junctions were made by welding the 

thermocouple wires, soldering the junction to a tapered copper plug of approx- 

imately 1/16 in, diameter and driving the plugs into holes in the test section. 
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Excess length of the  plug was f i l e d  off and the  plug end peened over and 

polished. 

b. Thermal Insulat ion of Test Sections 

The l o c a l  heat t r a n s f e r  r a t e s  from the  t e s t  surfaces t o  the  surrounding 

l i q u i d  was determined by equating them t o  the r a t e s  of enthalpy change of the  

t e s t  sect ions i n  the t e s t  surfaces. For t h i s  technique t o  be sa t i s fac tory ,  

tes t  sect ions had t o  be thermally insulated from t h e  adjoining spacer pieces. 

Before deciding t o  use c y l i n d r i c a l  heating surfaces,  attempts were made 

t o  use rectangular copper blocks as plane v e r t i c a l  heating surfaces.  

some of the methods of insu la t ing  the s ides  of rectangular block t o  reduce end 

e f f e c t s ,  i n t e r e s t i n g  r e s u l t s  were observed. With Teflon s t r i p s  as insu la t ion  

on the  s ides  of blocks, higher heat f l u x  values were observed than without t h e  

insu la t ion  s t r i p s .  

With 

To avoid such edge e f fec ts ,  c y l i n d r i c a l  heating surfaces were used instead 

of plane v e r t i c a l  surfaces.  To i n s u l a t e  the t e s t  sect ions from the  spacer 

pieces, attempts were made t o  introduce an a i r  gap of 0.005 in .  between them 

but t h i s  was not prac t icable  because of d i f f i c u l t y  i n  properly al igning the 

d i f f e r e n t  sect ions,  

It was established t h a t  no adverse e f f e c t s  were introduced by using a 

0.005 i n ,  Teflon washer between the sect ions (Appendix B).  To minimize the  

area of heat leakage from the  t e s t  sec t ion  t o  the  adjoining sect ions due t o  

temperature d i f f e r e n t i a l  i n  the  various sect ions during the  cool down period, 

a recess was cut i n  the  spacer pieces s o  t h a t  only a c i r c u l a r  sect ion of 1/16 

in ,  r ad ia l  thickness was i n  contact with the t e s t  section. 
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c. Test Piece Dimensions 

A s  has been mentioned e a r l i e r ,  to avoid possible  edge e f f ec t s ,  it was 

decided to use cy l ind r i ca l  t e s t  surfaces  to simulate plane v e r t i c a l  surfaces.  

This would then require  es tab l i sh ing  t h a t  using a cy l ind r i ca l  t e s t  surface 

would give the  same resul ts  as  plane surfaces.  It was proposed to es t ab l i sh  

t h i s  f a c t  by using t e s t  surfaces  of d i f f e r e n t  diameters so t h a t  if  t h e  r e s u l t s  

obtained from these surfaces  agreed within themselves, i t  could be concluded 

t h a t  t he  curvature had no e f f ec t .  For the  smaller t e s t  surface,  it was arb i -  

t r a r i l y  decided to use a 1 i n ,  diameter t e s t  surface9 The se lec t ion  of t he  

l a r g e s t  diameter depended on the  s i z e  of dewars avai lable .  To f ind  t h e l a r g e s t  

diameter t e s t  surface t h a t  could be used in the  ava i lab le  dewar without i n t ro -  

ducing arty e f f e c t s  due to the  container  s i z e  severa l  t e s t s  were conducted and 

t h e  r e s u l t s  showed (Appendix C )  t h a t  with the  4 i n ,  diameter dewar, a maximum 

diameter of 3 i n ,  f o r  t h e  t e s t  surface could be used. To be sure t h a t  thecon-  

t a i n e r  s i ze  had no e f f e c t  on the  r e s u l t s  obtained, it was decided to l i m i t  t h e  

diameter of t e s t  surfaces  t o  2-1/4 i n ,  

and 2-1/4 i n ,  diameter were constructed,  

indicated t h a t  turbulence e f f e c t s  would become apparent a t  r e l a t i v e l y  shor t  

heights  from t h e  leading edge-of t he  order of a f r a c t i o n  of an inch, 

therefore ,  decided to construct  t e s t  surfaces of 6 i n ,  height t o  obtain da ta  

under normal grav i ty  conditions,  However, because of dimensional l imi t a t ions  

imposed by the  dewar i n  t h e  drop package, t he  height  of t e s t  pieces  t o  be used 

in t he  drop package was l imi ted  t o  4 i n ,  and a diameter of 1 i n ,  

Hence, t e s t  pieces  of 1 in .  diameter 

Ea r l i e r  reported r e s u l t s  ( 24,39) 

It was, 



To obtain l o c a l  heat f i u x  data  under normal g rav i ty  conditions,  f i v e  t e s t  

It might be noted t h a t  each of surfaces  were constructed as  shown i n  Table I, 

t h e  f i v e  t e s t  surfaces  constructed contains one sec t ion  located a t  t he  same 

height of 3 in.  from the  leading edge, f o r  purposes of comparison of da ta  

obtained with the  d i f f e ren t  t e s t  surfaces ,  

TABLE I 

DETAILS OF TEST SURFACE: a/g=l 

Test Surface Diameter of Test Section Locations 
Iden t i f i ca t ion  Test Surface, Above Leading Edge, i n ,  

Number i n ,  

1 

1 

1 

2-1/4 

2-1/4 

Because of t he  shor te r  heights  of t e s t  surfaces t h a t  could be accommodated 

i n  the  drop package f o r  s tud ies  under reduced gravi ty  conditions,  it was decid- 

ed t o  l i m i t  the  number of t e s t  sec t ions  t o  two i n  each surface.  De ta i l s  of 

t e s t  surface dimension and t e s t  sec t ion  loca t ions  f o r  reduced gravi ty  s tud ies  

a re  given i n  Table 11, 
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TABLE I1 

DETAILS OF TEST SURFACES: a/g 0,008 

Test Surface Diameter of Test Section Locations 
I d e n t i f i c a t i o n  Test Surface, Abave Leading Edge, in .  

Number in .  

8 1 3/89 2 

9 1 5/87 3 

10 1 1-1/8, 3-1/2 

2. TEST SURFACE FOR WOTOGRAPHIC STUDIES 

While a l l  heat f lux  measurements were made by employing a t rans ien t  tech- 

nique, i t  was desirable  t o  have steady s t a t e  conditions avai lable  f o r  photo- 

graphic measurements of 'vapor f i l m  thickness. For t h i s  purpose a t e s t  surface 

as shown i n  Figure 4 was constructed of f r e e  machining telurium copper. A 

1/2 i n ,  hole was d r i l l e d  i n  a 1 in.  diameter cylinder x 6-1/2 i n ,  height t o  

receive a 1/2 in .  diameter car t r idge  heater  of 1000 watts capacity. To avoid 

the  p o s s i b i l i t y  of noise pick up by thermocouples, D,C ,  power supply was used 

fo r  the car t r idge  heater.  Two thermocouples were i n s t a l l e d  i n  d r i l l e d  holes 

a t  the  top  t o  measure the temperature of the t e s t  piece. The ends of the sur- 

face were closed by threaded copper end pieces. To prevent boi l ing from top  

and bottom ends of the t e s t  surfaces, end pieces of 0,001 i n ,  s t a i n l e s s  s t e e l  

shimstock, similar t o  those used f o r  the other pieces,  were attached t o  the  

t e s t  surface, For photographic s tudies  only a p a r t  of the cylinder was seen 

and hence a reference was necessary fo r  q u a n t i t a t h e  measurements f o r  f i l m  
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Figure 4, Test surface for photographic studies. 
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thickness,  

s t re tched p a r a l l e l  t o  the  t e s t  surface a t  a dis tance of 1/2 in .  from the  

cyl inder .  Pinch marks were made a t  i n t e r v a l s  of 1 in., the  f i r s t  one approx- 

imately t o  coincide w i t h  t he  leading edge of t he  t e s t  surface, I n  the  photo- 

graphic f i l m s  only about 3/4 in .  along the  axis  was v i s i b l e  and these pinch 

marks served t o  iden t i fy  the  dis tance from the leading edge a t  which photo- 

graphs were taken. 

For t h i s  purpose, an 18-gauge wire (0.040 in.  diameter) was 

B. Dewars 

Three d i f f e ren t  dewars were used-a deep Pyrex g l a s s  dewar for obtaining 

l o c a l  heat f l u x  values under normal grav i ty  conditions,  a cy l ind r i ca l  s t a i n l e s s  

s t e e l  dewar f o r  l o c a l  heat f l u x  measurements under reduced gravi ty  conditions,  

and a rectangular  s t a i n l e s s  s t e e l  dewar w i t h  Pyrex g l a s s  windows for photo- 

graphic s tudies .  I n  the  g l a s s  dewar and the  drop package dewar, the in s t ru -  

mented t e s t  surfaces were immersed i n  a pool of l i q u i d  nitrogen or l i qu id  

hydrogen and the  temperatures of the t e s t  sec t ion  monitored by the  thermo- 

couples attached t o  them and recorded on an eight-channel Sanborn Recorder, 

The t e s t  piece f o r  photographic s tud ies  was heated by a car t r idge-type e l e c t r i c  

heater .  

r e l i e f  ,valves e 

Pressures i n  the  dewars were held constant by the  use of pressure 

1. PYREX GLASS DEWAR 

To obtain the l o c a l  heat  flux values a Pyrex g l a s s  dewar as shown i n  Figure 

5 was wed,  This dewar was  double walled, vacuum insu la ted  with an upper part 
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made of s ing le  walled sec t ion  which terminated with a metal f lange 'via a Kovar 

intermediate metal flange., The dewar was s i lvered  except f o r  two 1 i n ,  wide 

diametr ical ly  opposite s t r i p s  which permitted v i sua l  observation of bo i l ing ,  

The dewar had an I , D ,  of 10 em, a height of 65 cm, and had a capaci ty  of 5 

l i t e r s ,  The dewar i t s e l f  was surrounded by a second double walled, vacuum 

insulated dewar which was used t o  surround the  inner  dewar with l i q u i d  n i t ro -  

gen, This l i q u i d  ni t rogen acted as  a heat sh ie ld  f o r  the  t e s t  l i q u i d  con- 

t%ined i n  the  inner  dewar, 

I n  previous works with spheres, t he  t e s t  object  was attached t o  a s ta in-  

l e s s  s t e e l  tube which passed through a gland on the  f lange mounted on top  of 

the  dewar, The sphere was introduced i n t o  the  t e s t  l i q u i d  by s l i d i n g  the  tube 

i n  the  gland. It was observed t h a t  small quan t i t i e s  of moisture adhering t o  

this s l id ing  tube found i t s  way i n t o  the  g l a s s  dewar where it was vaporized, 

When the  sphere was withdrawn from the  t e s t  l iqu id ,  t h i s  moisture condensed 

on the  sphere and i f  the  sphere was immersed with t h i s  coat ing of condensed 

moisture on it, heat f lux  ,values higher than t h a t  with a c lean sphere were 

obtafnzed, The pyoblem was solved by r a i s i n g  the  temperature of the  sphere t o  

l e v e l s  above the  dew point  and then introducing it i n  the  t e s t  l iqu id .  

However, the  same procedure could not be adopted with the  present cy l ind r i ca l  

t e s t  surfaces t o  obtain data  a t  temperature l e v e l s  lower than 32°F; i n  such 

cases s t a r t i n g  with a temperature above 32°F and cooling the  t e s t  surfaces  t o  

muchlowertemperatures would r e s u l t  i n  considerable temperature d i f f e r e n t i a l s  

being establ ished between the  d i f f e r e n t  sect ions t h a t  make up a t e s t  surface,  

thus producing a nonisothermal surface,  It was desired t o  maintain an 



isothermal surface. This was accomplished by precooling the t e s t  surface t o  

the  v i c i n i t y  of the  desired temperature l e v e l  by immersion i n  the  l iqu id ,  

removing the t e s t  surface, su i tab ly  warming it up t o  e s t a b l i s h  an isothermal 

surface and introducing it i n  the  t e s t  l iquid.  For t h i s  technique t o  be 

successful, it was necessary t o  prevent the ingress  of moisture, and hence 

a l i f t i n g  and lowering device with a r o t a r y  seal instead of a s l i d i n g  s e a l  was 

designed and used. 

A manifold flange mounted on the top  of the g lass  dewar provided a l l  per- 

manent connections such as vent l i n e s ,  pressurizat ion l i n e s ,  etc. ,  and a l s o  

served as  a base f o r  the upper chamber assembly which supported the  t e s t  piece. 

Figure 6 shows d e t a i l s  of t h i s  assembly. 

one end of which was supported on a bearing on the inside of the chamber and 

the other end came out of the chamber through a gland. This shaf t  had two 

pulleys which housed s u f f i c i e n t  lengths of s t a i n l e s s  steel  cables. The t e s t  

piece was suspended from these cables. The shaf t  extension had a handle and 

an automatic s top t o  prevent the  lowering of the  t e s t  surface by i t s  own 

weight. 

thermocouple gland was attached. A l l  the  thermocouple wires from the t e s t  

sect ions passed through t h i s  gland. 

r e l i e f  valves s e t  t o  open a t  1/2 psig, and a f i t t i n g  f o r  f i l l i n g  the dewar 

with l i q u i d  hydrogen. 

used t o  evacuate the l i q u i d  by pressurizing the  dewar. 

connected t o  a heat exchanger made of copper tubing, whose o u t l e t  was led  i n t o  

The upper chamber contained a shaf t  

To  the  top f lange of the  chamber, a smaller f lange w i t h  a 3are wire 

The top  f lange a l s o  car r ied  two 1/2 in.  

A dump tube extending t o  the  bottom of the  dewar was 

The dumF tube was 
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Figure 6. Device f o r  r a i s i n g  and lowering test surface.  
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the  intake of an exhaust fan. 

of l iqu id  hydrogen. 

This arrangement permitted t h e  safe evacuation 

2. DROP PACKAGE DEWAR (Figure 7) 

The s t a i n l e s s  s t e e l  c y l i n d r i c a l  dewar f o r  the drop package i s  a double 

walled ,vessel w i th  super insulat ion.  

12 in .  deep w i t h  a neck opening of 4 i n ,  diameter, 

attached a heating chamber i n t o  which the  t e s t  piece can be drawn and heated 

by an e l e c t r i c a l  heating c o i l .  A reservoir  f o r  l i q u i d  nitrogen i s  provided 

a t  the top of the  dewar; the  l i q u i d  nitrogen i n  t h i s  reservoi r  precools the 

dewar before f i l l i n g  it w i t h  l i q u i d  hydrogen. 

The inner  vesse l  i s  8 in .  diameter x 

To the t o p  of the dewar i s  

A double walled f i l l  l i n e ,  a .vent l i n e ,  th ree  thermocouples-two a t  

d i f f e r e n t  heights i n  the  t e s t  l i q u i d  and one i n  the  'vapor space-a tube car- 

rying two l i q u i d  l e v e l  ind ica t ing  sensors-one high l e v e l  and one low level-  

pass through the lower flange of the  heating chamber, Two more thermocouples 

and the e l e c t r i c a l  leads f o r  the heater  pass through the  top flange of the  

heating chamber, 

s l i d e s  i s  mounted on t h i s  t o p  flange. 

t e s t  piece i s  removed or immersed from the t e s t  l i q u i d ,  Two l i q u i d  l e v e l  indi-  

ca t ing  sensors a re  mounted i n  the reservoir  on the top  of the dewar. 

A gland through which the tube carrying the  t e s t  piece 

By r a i s i n g  or lowering t h i s  tube the  

The dewar i tself  i s  suspended f r o m t h e  cover p l a t e  of the drop package by 

s t a i n l e s s  s t e e l  rods. Appropriate f i t t i n g s  f o r  the  f i l l  l i n e s ,  vent l i n e ,  

pressure release,  etc. ,  a r e  mounted on the cover p l a t e ,  After f i l l i n g  the 

dewar wi th  t h e  t e s t  l iqu id ,  two pressure r e l i e f  ,valves were attached t o  t h e  
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Figure 7.  Drop tower t e s t  package. 
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f i l l  l i n e ,  t o  regulate  the pressure i n  the  dewar. 

mounted on the drop package provides helium f o r  pressurizing the system f o r  

s tud ies  i n  subcooled l iquids .  

A small l e c t u r e  b o t t l e  

The thermocouple wires from t h e  t e s t  pieces pass through the 1/4 in .  diam- 

e t e r  supporting tube, The thermocouple outputs a r e  connected t o  a recorder v ia  

a drop cable, consis t ing of e ight  24-gauge copper wires and 24-gauge constantan 

wires. Double shielding of t h i s  cable was necessary t o  minimize noise pick up, 

p a r t i c u l a r l y  when opera.ting a t  high s e n s i t i v i t i e s  The consta.ntan wires served 

t o  make the reference junctions i n  ice .  

D e t a i l s  of drop tower, package construction, decelerat ion device, e tc . ,  

a re  given i n  Appendix A. 

3 .  DEWAR FOR PHOTOGRAPHIC STUI)IES (Figure 8) 

A s t a i n l e s s  s t e e l  rectangular dewar of ins ide  dimensions 5 in .  x 8 i n ,  x 

1 4  in .  was fabricated f o r  the  purpose of obtaining motion p ic tures  of f i l m  

boil ing.  The dewar was double walled permitt ing the evacuatian of the  space 

between them, For obtaining photographic f i l m s ,  four  window glasses  of 3 i n ,  

diameter Pyrex were i n s t a l l e d ,  two on each s ide,  To provide a s e a l  between 

the  window glasses  and the frame, "0" r ings  general ly  avai lable  were not e f f e c  

t i v e  as they hardened a t  the  low temperatures of l i q u i d  nitrogen. "0" r ings  

of Rulon (made by Dixon Corporation) and of Compound 6317 (made by Precision 

Rubber Co.) were found t o  be sa t i s fac tory .  

Frequent chipping of the edges of the window glasses  i n i t i a l l y  observed 

Contraction of the "0" was eliminated by grinding the  edges of the  glasses,  
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r ings  a t  low temperatures resu l ted  i n  slackening of t he  b o l t s  holding the win- 

dows with a loss of vacuum. This was corrected by the  use of spr ing washers. 

With a vacuum pump running continuously, a 'vacuum of approximately 1/4 in ,  

l e s s  

dewar. 

than the  barometric pressure was possible,  with l i qu id  nitrogen i n  the  

C. Assembly of Test Surfaces 

Before f i n a l  assembly of t he  t e s t  surfaces,  t h e  copper pieces were tempo- 

r a r i l y  assembled and polished so  t h a t  a smooth alignment was obtained. This 

w a s  then disassembled, Three thermocouples of copper constantan of the  

required length were made by welding one junction. The thermocouple wire w a s  

then passed through the hole i n  the  t e s t  sect ion,  and soldered t o  an OFHC 

copper plug which was then driven i n t o  the  t e s t  sect ion,  Excess length of the  

plug w a s  f i l e d  off and peened i n  place. This was then l i g h t l y  f i l e d ,  smoothed 

with emery c lo th  and f i n a l l y  polished with jeweler ' s  po l i sh  till  a smooth sur- 

face was obtained, After pol ishing it was not possible  t o  loca te  the  plug by 

normal v i sua l  inspection, The t e s t  piece dimensions were measured w i t h  a 

vernier ca l ipe r s  and recorded. The weight of t he  test sect ion with the thermo- 

couple was determined i n  a chemical balance. Subtract ing the  weight of t h e  

thermocouple gave the  net  weight of the  tes t  section. The thermocouple wires 

were insulated by s l ipp tng  a 24-gauge Teflon o r  polyethelene tubing up t o  the  

bare wire thermocouple gland a t  the  top, 

w i t h  end pieces  of s t a i n l e s s  s t e e l  shim stock and 0.005 in .  Teflon in su la to r s  

The tes t  piece was then assembled 



between the  t e s t  sec t ions  and spaeer pieces,  The s t a i n l e s s  s t e e l  b o l t s  holding 

the  sect ions together  were insu la ted  from the  t e s t  piece with Teflon tape,  

After assembling the  t e s t  piece the  b o l t s  were s l i g h t l y  t ightened, t h e  

excess Teflon trimmed, and t h e  pieces  properly aligned by pressing between two 

V-blocks, The b o l t s  were then t ightened and the  edges smoothed with crocus 

cloth,  and f i n a l l y  polished, The s t a i n l e s s  s t e e l  end pieces  were sealed with 

a 0,005 i n ,  s t a i n l e s s  s t e e l  d i sc  using RTV t o  s e a l  the  edges, The thermocouple 

wiyes from the  gland on the  t e s t  surface t o  the  gland on the  ho i s t ing  device 

were a l s o  insu la ted  with Teflon tubing, The thermocouple wires leading from 

the  gland on the  t e s t  piece t o  the gland on the  ho i s t ing  device required g rea t e r  

f l e x i b i l i t y .  Since Teflon has g rea t e r  f e l x i b i l i t y  than polyethelene, pa r t i c -  

u l a r l y  a t  low temperatures, it w a s  used i n  t h i s  sec t ion ,  The thermocouple 

wires were then passed through the  gland on the  hois t ing  device, The t e s t  

piece was attached t o  t he  s t a i n l e s s  s t e e l  ho i s t ing  cable,  and adjusted,  so 

t h a t  the t e s t  piece remained v e r t i c a l ,  

was then i n s t a l l e d  on the  g lass  dewar. 

The hois t ing  device with the  t e s t  piece 

De Photographic Apparatus 

To measure the vapor f i l m  t h i e h e s s  and the  extent  of i n t e r f a c i a l  osc i l -  

l a t i o n s ,  motion p i c tu re s  were taken with a high-speed drum camera, Dynaf'ax 

Model 326 (manufactured by Beekman and Whitley) 

33-7/8 in ,  length i s  used and the  maximum number of frames exposed was 224. 

The f i lming r a t e  could be varied from 180 frames/second t o  a maximum of 26,000 

A 35 mm f i l m  s t r i p  of 
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frames/second, 

3-l/2 in. diameter condensing lens. 

(and hence the filming rate) was monitored by a magnetic tachometer mounted on 

the camera and read on an electronic counter. 

used, The arrangement of the equipment used to obtain motion pictures is 

shown in Figure 9. 

Backlighting was provided by a 500-watt projector with a 

The speed at which the camera drum rotated 

Kodak Pan-X film (ASA 123) was 

-TEST 
SURFAC 

-LIGHT 
SOURC 

Figure 9. Arrangement f o r  photographic studies. 



CHClPTER 111 

INSTRUMEXPATIOM 

To ca l cu la t e  t h e  l o c a l  heat f l u x  values a t  d i f f e r e n t  temperature leve ls ,  

t h e  thermocouple outputs from t h e  tes t  sect ions i n  t h e  heating surfaces  were 

recorded on a Sanborn Recorder, The Sanborn Recorder i tself  was ca l ib ra t ed  

by comparison wi th  a potentiometer. The potentiometer was a l so  used f o r  mea- 

sur ing t h e  thermocuple output i n  l i q u i d  ni t rogen and l i q u i d  hydrogen f o r  pur- 

poses of  c a l i b r a t i n g  t h e  thermocouples. 

A. Thermocouples 

A l l  thermocouple outputs were measured r e l a t i v e  to t h e  i c e  point.  The 

thermocouples were made of  30-gauge copper-constantan wires. The p rec i se  lo-  

ca t ion  of t h e  thermocouples i n  t h e  t es t  sec t ion  was unimportant as  a l w e d  

ana lys i s  was employed i n  t h e  ca lcu la t ion  o f  heat f l u x  (Chapter I V )  which gave 

acceptable accwacy (Appendix D). Copper-constantan thermocouples have r e l a -  

t i v e l y  l o w  thermal power a t  t h e  low temperatures a t  which data  were obtained 

i n  t h e  present experiments and it was necessary to operate t h e  recorder a t  

high s e n s i t i v i t i e s  of  up to 2 ,uv/div. 

a t  t h i s  high s e n s i t i v i t y  a l l  thermocouple lead  wires were covered by a double 

e l e c t r o s t a t i c  shield.  The lead  wires were l ed  t o  a switch box which permitted: 

To minimize noise  pickup when operating 

(1) t h e  thermocouple outputs to be fed i n t o  t h e  recorder;  



( 2 )  t h e  thermocouple outputs to be measured by t h e  potentiometer f o r  

purposes of ca l ib ra t ing  t h e  thermocouples; and 

t h e  potentiometer output to be fed i n t o  t h e  recorder f o r  c a l i b r a t i n g  

t h e  r ec  order. 

(3 )  

B. Potentiometer 

To c a l i b r a t e  t h e  thermocouples i n s t a l l e d  i n  t h e  t e s t  surface,  t h e  outputs 

from t h e  thermocouples i n  t h e  t e s t  l i q u i d  ( l i q u i d  nitrogen or l i q u i d  hydrogen) 

were read on a Leeds and Northrup Model K3 potentiometer; t h e  unbalance i n  t h e  

potentiometer was amplified and detected with a Rubicon Model 3550 photoelec- 

t r i c  galvanometer and amplif ier  system. The potentiometer has an accuracy of 

k ( O . O l 5 $  + 0.5 pv). 

-6190 i.~v and t h e  maximum e r r o r  was k 1.43 pv corresponding to If: 0.5OR. 

duce t h e  e f f e c t  o f  bui lding vibrat ion,  t h e  amplif ier  f o r  t h e  n u l l  de tec t ion  

system was located on a platform suspended from t h e  c e i l i n g  wi th  s o f t  spr ings 

i n  t h e  supports. A Honeywell s e r i e s  3100 spo t l igh t  galvanometer indicated 

t h e  unbalance i n  t h e  c i r c u i t .  

The maximum output measured i n  l i qu id  hydrogen was 

To r e -  

C. Sanborn Recorder 

Model 7708 A Sanborn Recorder was used t o  record t h e  thermocouple output 

from t h e  tes t  sect ion,  a s  a funct ion of time. 

The recorder had eight  channels, and appropriate  preamplif iers  could be 

used f o r  each channel depending on t h e  input s ignal .  For recording t h e  



thermocouple outputs, Model 8803 high gain DC amplif ier  was used. The maximum 

usable de f l ec t ion  of t h e  recorder s ty lus  was 4 cm divided i n t o  50 d iv is ions  on 

t h e  recording cha r t  paper. The recording char t  could be run a t  speeds varying 

from 0.25 mm/sec t o  100 mm/sec i n  nine steps.  

25 mm/sec was used. 

The preamplif ier  could be operated a t  s e n s i t i v i t i e s  from 1000 Dv/div to 1 pv/div, 

wi th  t h e  usual  operat ion a t  2 pv/div or 5 wv/div. The nonl inear i ty  of t h e  r e -  

corder i s  spec i f ied  by t h e  manufacturer to be & 0.25 div,  which corresponds t o  

-?I 0 - 5  DV and & 1.25 pv a t  s e n s i t i v i t i e s  of 2 pv/div and 5 Mvldiv, respect ively.  

The milaimum temperature a t  which t h e  recorder was operated a t  2 ,uv/div was 

136O~, and a t  t h i s  temperature, t h e  recorder nonl inuar i ty '  contnibutes an un- 

ce r t a in ty  corresponding t o  5 0.05OR. 

400"R and k 0 .067"~ .  

Generally, a cha r t  speed of 

A t i m e  marker recorded 1 sec (or 1 min) timing pulses.  

The corresponding values a t  5 pv/div a r e  

D. Pressure 

The pressure i n  t h e  g l a s s  dewar and i n  t h e  b o p  package dewar was ob- 

served on a ca l ib ra t ed  12 in. Heise pressure gauge with a range of 0-25 ps ig  

with a ca l ib ra t ed  accuracy of & 0.025 ps i .  

steps.  

The gauge was divided i n t o  0.1 p s i  



CHAPTER IV 

EXPERIMENTAL PROCEDURES AND DATA REDUCTION 

A. F i l l i n g  Dewars 

To obtain l o c a l  heat f l u x  values I n  l i q u i d  nitrogen, t he  upper chamber 

The dewar was evacuated with the  t e s t  piece was assembled on the  g lass  dewar. 

of a i r  with the vacuum pump and then f i l l e d  with nitrogen gas t o  atmospheric 

pressure. The dewar was then f i l l e d  w i t h  l i qu id  nitrogen by pressurizing the  

l i qu id  nitrogen container w i t h  nitrogen gas. 

uid nitrogen was f i l l e d  i n  the  dewar, venting took place through two relief 

valves mounted on the  hois t ing device which were s e t  t o  open a t  1/2 psig. 

These r e l i e f  valves maintained a constant pressure i n  the  dewar during t h e  ex- 

periments. Before obtaining the  data,  t h e  atmospheric pressure was measured 

When t h e  proper quantity of l i q -  

w i t h  a mercury barometer. 

For operation i n  l i qu id  hydrogen a more elaborate  purging sequence was 

followed t o  reduce the  p o s s i b i l i t i e s  of contamination. The system was evacu- 

a ted of a l l  a i r ,  t h e  vacuum broken w i t h  nitrogen gas, and pressurized t o  a 

pos i t ive  pressure of 6-8 psig. 

nitrogen gas and then th ree  times w i t h  hydrogen gas before f i l l i n g  the  dewar 

with l i qu id  hydrogen. 

nitrogen before f i l l i n g  the  inner dewar with t h e  tes t  l iquid.  

This sequence was repeated three  times with 

In  a l l  cases the  outer dewar was f i l l e d  wi th  l i qu id  



B. Cal ibrat ion of Recorder and Thermocouples 

Before proceeding t o  obtain the  cooling curves a t  d i f f e r e n t  temperatures, 

the  thermocouples i n  t h e  tes t  surfaces  and t h e  recorder were ca l ib ra t ed  and 

t h e  recorder accuracy checked by the following procedure. The t es t  surface 

was lowered i n t o  the  t e s t  l i q u i d  atid. allowed t o  come t o  thermal equilibrium. 

The output of t h e  thermocouples i n  t h e  t es t  sec t ions  was measured w i t h  the  po- 

tentiometer.  

from t h e  standard tab les .  

temperature a t  which heat f l u x  da ta  were t o  be obtained was determined by 

using t h e  standard t a b l e s  (55 )  and assuming the  deviat ion of the thermocouple 

outputs t o  vary l i n e a r l y  from the  l i q u i d  temperature t o  t h e  reference tempera- 

t u r e  ( i c e  bath).  The appropriate  zero suppression was applied t o  t he  recorder 

using t h e  potentiometer a s  t h e  s igna l  source. The recorder  gain was a l s o  ca l -  

ib ra ted  by changing the  input from t h e  potentiometer by a known value and ob- 

serving t h e  corresponding def lec t ion  on the  recorder.  The same procedure was 

adopted for a l l  the  channels on which the  output from t h e  t e s t  sec t ions  were 

t o  be recorded. 

This was used t o  f ind  the  deviat ion of t h e  thermocouple output 

The output of t h e  thermocouple corresponding t o  t h e  

The tes t  surface was then r a i sed  from t h e  tes t  l i q u i d  and allowed t o  w a r m  

up t o  the  desired temperature level .  During t h i s  warming up a 650-watt movie 

lamp was used w i t h  appropriate  masking on t h e  g l a s s  dewar t o  l o c a l l y  heat the  

tes t  surface t o  obtain an isothermal surface while  recording t h e  data. When 

t h e  t e s t  surface temperature was j u s t  a few degrees higher than the  tempera- 

t u r e  a t  which t h e  da ta  were t o  be obtained, t h e  recorder cha r t  speed was set a t  
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25 mm/sec and t h e  t e s t  surface lowered i n t o  the t es t  l iquid.  

cooling t o  the  desired temperature took p lace  within a f e w  seconds---l0-l5 sec. 

Figure 10 shows a t y p i c a l  recorder output. A s  soon as the  tes t  surface cooled 

down a few degrees p a s t  the  desired temperature the  t e s t  surface was raised,  

warmed, and t h e  sequence repeated. 

thus obtained are  given i n  Table 111. 

I n  general, 

The t e s t  conditions under which data  were 

TABLE I11 

TEST Cr3NDITIGNS FSR DATA UNDER NORMAL GRAVITY: a/g = 1 

Test Surface Ident i -  Test Section 
Test 

Liquid 
f i c a t i o n  Number Location Above 

(and d i a  in .  ) Leading Edge, in. 

%-T, (OR) 
( Nominal) 

315, 251, 204, 99.7 

3Cj9 251, 204, 99.7 

3 400, 300, 230, l 0 G  
2 (1) 318, 3 ,  4-112 

2 

400, 300, 200, 100 
4 (1) 518, 3, 5-518 LN2 

L% 

315, 251, 204, 99.7 

6 (2-114) 7/89 3 9  3-112 LN2 31-5, 251, 204, 99.7 

7 (2-114) 2, 3, 4 LN2 31.5, 251J 204, 99.7 

3 403, 3 0 ,  230, 100 
5 (1) 1/49 1-1/29 3 

2 

In  l i q u i d  nitrogen, f i v e  sets of da ta  were obtained under each one of  these 

conditions, and i n  l i q u i d  hydrogen, three sets of data  were usual ly  obtained. 
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C. Drop Package Operation 

The f i l l i n g  sequence f o r  t h e  meta l l ic  dewar i n  t h e  drop package, used 

f o r  obtaining l o c a l  heat f l u x  data  uridkr reduced gravi ty  and subcooled condi- 

t i o n s  was s imi la r  t o  t h a t  wi th  t h e  g l a s s  dewar. The dewar was f i l l e d  with 

t h e  package r e s t i n g  on a platform. 

l iqu id ,  t h e  t es t  surface was immersed and allowed t o  c o o l  down t o  t h e  satura-  

When t h e  dewar was f i l l e d  with t h e  t e s t  

t i o n  temperature. 

ometer. The tes t  surface was r a i s e d  i n t o  t h e  heating chamber where it was 

The thermocouple outputs were measured with t h e  poten t i -  

heated with an e l e c t r i c a l  heater  l i n i n g  t h e  chamber. The heater  was o3erated 

in t e rmi t t en t ly  f o r  shor t  durat ions o f  approximately 15 sec a t  about 30 wat ts  

t o  avoid over heating. 

r e l e a s e  mechanism. 

char t  speed brought up t o  25 mm/sec. 

The package was then r a i sed  and held suspended i n  t h e  

The recorder  was adjusted a s  described previously and t h e  

The tes t  surface was then immersed i n  

t h e  t e s t  l iqu id ,  and t h e  package released a t  t h e  appropriate time. The in-  

s t a n t  of r e l ease  was marked on t h e  recorder char t  by a s igna l  provided by a 

dry c e l l  i n  t h e  package r e l ease  c i r c u i t .  The package was then hois ted back 

i n t o  posi t ion.  Figure 11 shows t h e  recorder output during one such drop. 

The method of i n s e r t i n g  t h e  t es t  surface l imi ted  t h e  da ta  t o  only one 

value of  AT, corresponding t o  room temperature. 

periments with spheres it was observed t h a t  when the  sphere a t  a temperature 

much lower than t h e  room temperature, was immersed i n  t h e  t e s t  l iqu id ,  very 

I n  some o f  t h e  e a r l i e r  ex- 

high heat  f l u x  values were obtained. The cause of these  high heat f luxes w a s  

found to be t h e  ingress  of  moisture i n t o  t h e  dewar; t h e  moisture adhering t o  
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I d e n t i f i c a t i o n  Location 

Base, in. 
Above 

t h e  supporting tube i n  i t s  r a i s e d  pos i t ion  found i t s  way i n t o  t h e  dewar when 

t h e  sphere was lowered. 

mained i n  t h e  dewar. 

condensed on t h e  sphere and remained u n t i l  i t s  temperature was above approxi- 

mately 32°F. Thus, i n  order t o  avoid t h i s  condensation, it was necessary t o  

r a i s e  t h e  temperature of t h e  tes t  surface t o  a t  least 32°F. 

t h e  t es t  surface a t  t h i s  high temperature, it was impossible to obtain an 

isothermal surface a t  low temperatures. 

This moisture on t h e  warm tube vaporized and re- 

When t h e  cold sphere was raised,  p a r t  of t h i s  moisture 

S tar t ing  wi th  

For obtaining subcooled data,  two relief valves, one s e t  a t  1/2 p s i g  

Jus t  before introducing t h e  and t h e  other t o  a higher pressure were used. 

t e s t  surface,  t h e  1/2 p s i g  r e l i e f  valve was i s o l a t e d  and t h e  dewar pressur- 

ized t o  a high pressure w i t h  corresponding gas; t h e  t es t  surface was then 

introduced i n t o  t h e  subcooled l i q u i d  and t h e  data  obtained. The conditions 

under which t h e  data  were obtained are given i m  Table IV.  

Test P, Subc ooling 
AT, 
"R Liquid p s i g  (Nominal) a/g 

O R  

TABLE I V  

TEST CONDITIONS FOR DATA UNDER 
REDUCED GRAVITY AND S U E O O U D  CONDITIGNS 

Test Conditions I T e s t  
Test Surface Section 

9 

10 

5/89 3 II LH2 
0 

32.3 8 

1.0, 0.008 

1.0 

451 

443 



D. Photographic Studies 

For photographic s tud ies  a tes t  surface (Figure 4) which could be main- 

ta ined  in steady condition was used. The rectangular dewar was f i l l e d  with 

LN2. 

troduced i n t o  t h e  dewar, i n i t i a t i n g  f i l m  boi l ing,  which was maintained by t h e  

e l e c t r i c a l  car t r idge  heater. The temperature of t h e  test  surface was deter-  

mined by measuring t h e  output of t h e  two thermocouples i n  t h e  t es t  surface 

wi th  t h e  potentiometer. The camera w a s  then brought up to the  desired speed, 

t h e  l i g h t  source was  switched on and t h e  exposure made. When t h e  first f i lm 

was made, it w a s  discovered t h a t  t h e  tes t  surface was indis t inguishable  from 

t h e  vapor film To determine t h e  loca t ion  of t h e  t e s t  surface, t h e  power sup- 

p l y  t o  t h e  heater  was shut off ,  allowing t h e  t e s t  piece t o  cool down t o  t h e  

l i q u i d  temperature. When a l l  bo i l ing  ceased, a second exposure was made a t  

t h e  same fi lming speed as  before but for a much shor te r  durat ion t o  give 

double exposures on 4-3 frames, which provided t h e  reference surface. 

t i ons  under which motion p i c t u r e s  were obtained a r e  given i n  Table V. 

The camera was loaded with Kodak Pan X film. The test surface was in- 

Condi- 



TABLE V 

CONDITIONS FOR MOTION PICTURl3S 

Nominal Height 0 in.  2 in . ,  4 i n . ,  6 in. 

Height Covered 3/4 in .  

S p e e d p r i t i n g  T ime  200 frames/sec/l sec 
500 frarnes/sec/O. 5 sec 

Nominal Height 1 in . ,  b l / 2  in .  

Height Covered 1-112 i n .  

Speed/Writing Time 20G frames/sec/l sec 
565 frames/sec/? sec 

( T  -Ts) OR 
W 

3 0 ~ ,  230, 139 

E. Data Reduction 

With l i q u i d  ni t rogen a s  t h e  t e s t  f l u id ,  thera.nge of  thermocouple output 

recorded on t h e  recorder  char t  was determixed from t h e  zero-suppression ap- 

p l i e d  t o  t h e  recorder and t h e  s e n s i t i v i t y  a t  which it was operated. The value 

of  t h e  zero-suppression applied was determized from t h e  cutput c f  t h e  thermc- 

couple a t  approximately t h e  des i red  temperature a t  which t h e  d a t s  were t o  be 

obtained; t h e  s e n s i t i v i t y  a t  which the  recorder was operated was such a s  t o  

give a reasonable slope or t he  recorder. It was found t h a t  whec the  recorder 

was run a t  a cha r t  speed a t  25 mm/sec, a wr i t i ng  t i m e  o f  approximately 2-6 
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sec provided a reasonable s lope by operating a t  a s e n s i t i v i t y  of 5 w/d iv i s ion  

a t  higher AT and 2 kv/division a t  lower AT. 

The heat f l u x  was determined from t h e  r e l a t ion :  r a t e  of  change of en- 

thalpy = heat t r a n s f e r  t o  tes t  section. I n  ca lcu la t ing  t h e  r a t e  of change of 

enthalpy, a lumped ana lys i s  was employed, i. e. , it was assumed t h a t  t h e  e r ro r  

due t o  assuming t h e  temperature p r o f i l e  i n  t h e  sec t ion  t o  be independent of 

time was negl ig ib ly  small. 

where it i s  shown t h a t  t h e  error  i n  assuming lumped ana lys i s  f o r  computing 

r a t e  o f  enthalpy change i s  less than 0.03%. The assumption of lumped analysis  

i s  equivalent t o  saying t h a t  t h e  t i m e  r a t e  of change of temperature determined 

a t  any one loca t ion  i n  t h e  t es t  sec t ion  can be assumed t o  be va l id  a t  a l l  

po in ts  i n  t h e  section. I n  Appendix D one of t h e  assumptions made i n  justif 'y- 

ing t h i s  assumption i s  t h a t  t h e  value of  t h e  heat t r a n s f e r  coe f f i c i en t  i s  con- 

s t a n t  a t  a given sect ion.  Experimental values show t h a t  t h i s  i s  approximately 

t h e  case for f i l m  bo i l ing  i n  t h e  range of tenperature  employed i n  t h e  present  

The j u s t i f i c a t i o n  f o r  t h i s  i s  given i n  Appendix D, 

study. 

We therefore have 

m C p ( T )  dAT q 
A A d t  

- - q'  = - - 

and 



- s ' ,  
AT 

h -  (4.3) 

To compute t h e  value of q' and h, m, C A, AT, ~andGdA%!/d% &&.be Beter- 
P' 

mined. 

The mass of  t h e  t e s t  sec t ion  was determined by weighing t h e  thermocouple 

a f t e r  it was made and then weighing t h e  t e s t  section-thermocouple combination 

a f t e r  a t taching t h e  thermocouple t o  t he  t e s t  section. The area of  heat t rans-  

f e r  from t h e  t e s t  sec t ion  was determined by measuring t h e  diameter of t h e  test 

sect ion along t w o  perpendicular diameters and taking the  ar i thmetic  average 

of t he  two. The thickness of t h e  test  sect ions was measured a t  four  locations.  

These measurements were made w i t h  a vernier  ca l ipers reading  t o  0.001 in. 

value of C 

l a t ed  values of which a r e  given i n  Appendix E. 

thermocouple output was measured d i r e c t l y  from t h e  recorder char t  by measuring 

t h e  l o c a l  slope and then converted t o  time r a t e  of change of  temperature. 

The 

a t  t he  appropriate  temperature was taken from Reference 58, tabu- 
P 

The time r a t e  o f  change of 

The following sample ca lcu la t ion  i l l u s t r a t e s  t h e  method adopted fo r  re- 

ducing heat flux data:  

Test Surface 7 

Nominal diameter of t e s t  piece,  2.25 in. 

Test Section, 2 

Location of  t e s t  sect ion,3 in. above leading edge 

Weight of  thermocouple, 2.067 gm 

Weight of sec t ion  + thermocouple = 80.619 gm 

Weight of t e s t  sec t ion  = 78.552 gm = 0.17317 l b  



Thickness of sect ion a t  four locat ions = 0.247 in,  0.250 in . ,  0.254 in. 

0.249 in. 

Average thickness = 0.230 in. 

Diameter a t  two locat ions,  2.249 in.  , 2.250 i n  

Average diameter = 2.2495 in.  

Area of  heat t r ans fe r  = 3.14159 x 2.2495 x 0.250 

2 
= 1.7668 in. 

2 
= 0.012269 f t  

= 14.114 l b / f t 2  (;)= 0.012269 

Date : 12/25/69 

Run #7004: 

Zero suppression measured w i t h  potentiometer = -2050 pv 

Sens i t i v i ty ,  2 cLv/div 

Speed of char t  dr ive:  

Reading obtained = 25 d iv  from zero suppressidn base 

Thermocouple output a t  which data  obtained (reference t o  i c e  point)  

l i q u i d  nitrogen 1/2 psig,  s.aturated 

25 m/sec  

= -2050 uv + ? x 25 d iv  = -2000 ~v Drv 

Calibration of Thermocouple and Recorder 

Thermocouple output i n  l iqu id  nitrogen from potentiometer,-5521 bv 

Barometric pressure, 29.24 in. Hg = 14.4 p s i  

Liquid nitrogen pressure = 1/2 ps ig  = 14.9 ps ia  

Saturat ion temperature of LN corresponding t o  14.9 ps i a  = l jg .4"R 2 



55 

Thermocouple ou tpu t  from standard tables a t  139.4"R = -5526 pv 

Deviation a t  - 
Standard t ab le  

-2000 thermocouple output a t  -2000 MV = -2000 + - 5521 

= -2001.8 MV 

Temperature corresponding t o  -2001.8 pv @rom standard table)  = 

390.2OR MV 

AT = T -T 

Thermopower a t  t h i s  temperature = 

= 390.2 - 139.4 = 250.8"R 
w s  

Yv = 18.47 5 3 3 . 2 5 M V  
"K 

Time Rate of Change of  Temperature 

Thermocouple output change corresponding t o  40 divis ions on chart  

paper a t  2 Hv/div = 80 MV 

- 4.33% 80 MV 

18.47 Temperature change corresponding t o  80 pv = - - 
Time f o r  t h i s  change = 3.2 sec 

Time r a t e  of change of  temperature = - 4'33 x 3600 3- 2 

"R 
= 4871.2 z, 

C (390.2"R) = O.O865/lb "R 
P 

= 14.114 x 0.0865 x 4871.2 

= 5466.1 Btu /hr  f t 2  

Data f o r  subcooled and reduced gravi ty  conditions were similary re- 

duced. 



F, Measurement of Vapor Film Thickness from Photographic Films 

The f i l m s  were projected on a ground g lass  w i t h  an enlargement of approxi- 

mately t en  times. 

a height of approximately 3/4 in .  

The f i l m  gave a f i e l d  on the t e s t  surface corresponding t o  

The diameter of  t h e  reference wire was 0.040 in.-and established t h e  

sca le  o f  t h e  projected image. 

exposed image defining the  boundary of the tes t  piece heating surface. 

pinch marks on t h e  reference w i r e  established the  locat ion of t h e  t es t  section 

i n  terms of  i t s  height from t h e  leading edge. The distance between t h e  refer- 

ence w i r e  and t h e  edge of  t h e  vapor f i l m  on t h e  other images was s imi la r ly  

measured and from these measurements t he  fi lm thickness was coquted .  

some of  t h e  images, it was d i f f i c u l t  t o  define t h e  vapor f i lm boundary pre- 

c isely,  and i n  such cases t h e  boundary was averaged over t h e  e n t i r e  image and 

t h e  thickness measured. 

The f i lm was posit ioned t o  pro jec t  t h e  double 

The 

In  

The film thickness was computed a t  a filming r a t e  of approximately 200 

frames/sec a f t e r  studying t h e  f i lm thickness a t  300 frames/sec and 200 frames/ 

sec under iden t i ca l  conditions and establ ishing t h a t  study of fi lms a t  200 

frames/sec gave a l l  t h e  desired information. 

by counting t h e  number of images i n  t h e  s t r i p  and from the  f a c t  t h a t  these 

were exposed i n  a wri t ing time of 1 sec giving approximately 200 frames/sec o r  

1/2 sec giving approximately 500 frames/sec. 

The fi lming r a t e  was established 



CHAPTER V 

MODEL AND AIYALYSIS 

Several analyses a re  ava l a b l e  f o r  the solut ion of laminar f i l m  bo i l .ng  

with a steady in te r face  and have been described e a r l i e r  i n  Chapter I, "Litera- 

t u r e  Survey" (6, 8-16) ,, 

analyses, The region of 'va l id i ty  of such analyses has not been defined and 

from e x i s t i n g  experimental evidence, laminar f i l m  bo i l ing  with a steady i n t e r -  

face  i s  unl ikely t o  be encountered except under unusual circumstances such as 

very near the leading edge, stagnation points,  reduced gravi ty  conditions, e t c .  

The modelling of f i lm boi l ing  on a 'ver t ica l  surface t o  predict  heat t rans-  

L i t t l e  experimental data a re  avai lable  t o  support the  

f e r  r a t e s  i s  complicated by two main fac tors :  

( a )  The probable onset of turbulence and i n s u f f i c i e n t  knowledge t o  def ine 

t r a n s i t i o n  from laminar t o  turbulent  flow regimep 

( b )  Onset of i n t e r f a c i a l  o s c i l l a t i o n s  of considerable amplitude, A t  

present there  i s  no way of predict ing the amplitudes of i n t e r f a c i a l  o s c i l l a -  

tions., It w i l l  be shown, l a t e r ,  t h a t  these  i n t e r f a c i a l  waves play an important 

r o l e  i n  enhancing heat t r a n s f e r  r a t e s .  

Recognizing these d i f f i c u l t i e s ,  an attempt w i l l  be made t o  pred ic t  heat 

t r a n s f e r  r a t e s  i n  f i l m  boi l ing on v e r t i c a l  surfaces using some of the  wel l  

known and experimentally proven concepts i n  s ing le  phase turbulent  flows, 

taking i n t o  consideration the e f f e c t  of i n t e r f a c i a l  waves. 

57 
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A v e r t i c a l  surface, immersed i n  a l i q u i d  a t  i t s  sa tura t ion  temperature 

T 

Figure 12. 

be made: 

i s  maintained a t  a uniform temperature 9 > Ts, inducing f i l m  boi l ing,  

To f ind the heat t ransfer  r a t e s ,  the following assumptions w i l l  

S W 

( i )  The l i q u i d  i s  incompressible; within the  range of pressure used 

the  densi ty  of the vapor i s  evaluated a t  t h e  f i l m  temperature, and i s  assumed 

constant over the  e n t i r e  vapor f i l m .  

(ii) 

f i l m  temperature. 

(iii) 

The vapor has constant propert ies  evaluated a t  the mean vapor 

The l i q u i d  i s  uniformly a t  i t s  sa tura t ion  temperature and the 

var ia t ion  of sa tura t ion  temperature with height i s  negligible.  

The increase i n  enthalpy of the  vapor as it flows i s  negl igible  

compared with the  heat t r a n s f e r  t o  the  l i q u i d  r e s u l t i n g  i n  vaporization, I n  

other words, the  heat t r a n s f e r  r a t e  i s  constant across the vapor f i l m .  It i s  

recognized t h a t  t h i s  i s  not s t r i c t l y  t rue .  The e f f e c t  of increase of enthalpy 

of vapor, i s  t o  reduce heat t r a n s f e r  t o  the  l i q u i d  leading t o  a decrease i n  

the r a t e  of vaporization a t  the interface.  This i s  usual ly  accounted f o r  by 

applying a correct ion f a c t o r  t o  the enthalpy of vaporization. 

( i v )  

Bromley (7 )  

used the correct ion f a c t o r  [l + 0.4 C AT/h f a  Frederking and Clark (57) 
P f g  

and Dougal and Rohsenow (56) ha've used the f a c t o r  11 + 0.5 C AT/h 3 e I n  
P f g  

turbulent flows, 

f i l m  temperature 

seems t o  be more 

the major p a r t  of the  'vapor can be expected t o  be a t  the mean 

and hence, f o r  t h i s  appl icat ion the f a c t o r  (1 + 9*5 C hT/h ) 

appropriate and w i l l  be used. 

P f g  
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Figure 12. F i l m  boiling model. 



( v )  Velocity p r o f i l e  and shear s t r e s s  d i s t r i b u t i o n  a r e  not affected 

by vaporization a t  the liquid-vapor in te r face ,  

( v i )  

( v i i )  

The eddy d i f f u s i v i t i e s  f o r  heat and momentum are equal, 

Steady state preva i l s  and time averaged values can be used f o r  

a l l  parameters. 

( v i i i )  Heat t r a n s f e r  from the t e s t  surface by rad ia t ion  i s  negl igible  

and the  vapor and l i q u i d  a r e  transparent t o  rad ia t ion ,  

( i x )  The i n t e r f a c i a l  veloci ty  i s  zero. For laminar vapor flow w i t h  a 

smooth interface,  Koh (9 )  has shown t h a t  t h i s  i s  a reasonable assumption i f  

the  r a t i o  [ (pk)  / ( p ~ ) ~ ] ” ~  i s  l e s s  than 1.0. For most common f l u i d s  t h i s  con- 

d i t i o n  i s  s a t i s f i e d ,  e.g., f o r  l i q u i d  nitrogen and hydrogen these r a t i o s  a re  

0.014 and 0.067, respectively,  and hence the i n t e r f a c i a l  veloci ty  can be 

neglected i n  t h e  laminar region., On a q u a l i t a t i v e  basis ,  it can be expected 

t h a t  a s imilar  behavior would p e r s i s t  i n  the  turbulent  regime also. 

V 

( x )  Other researchers ( 3 9 J O )  have attempted t o  seek a parameter t o  

define t r a n s i t i o n  from laminar t o  turbulent  flow. It w i l l  be assumed t h a t  

t r a n s i t i o n  takes place gradually. 

posed by Spalding i s  an accepted approximation f o r  single-phase turbulent 

flows, This w i l l  be assumed t o  be v a l i d  f o r  half  the vapor f i l m  thickness 

from the  heating surface. Coury and Dukler (50 )  consider the liquid-vapor 

in te r face  t o  be rough and have used d i f f e r e n t  ve loc i ty  p r o f i l e s  f o r  the  two 

halves of the vapor f i l m ,  However, i n  the  present analysis ,  from assumption 

( v ) ,  i t s  mirror image w i l l  be assumed t o  be applicable t o  the other half of 

the  vapor f i l m  adjacent t o  the  interface.  The ve loc i ty  p r o f i l e  i s  expressed as 

The universal  ve loc i ty  p r o f i l e  (44) pro- 



+ (ku+)* - I ~ U + ) ~  ( k ~ + ) ~ ]  
+ + + y = + L  [eku - 1 - ku - 

E 2:  31 41 

= F,(u+) 

+ 
For small .values of u , this may be approx- with k = 0.407, and 1/E = 0,0991. 

imated to y = u implying a linear .velocity profile. For large .values of u 
+ + -I- 

Eq, (3.1) can be approximated to 

+ 
+ 1 ku y- z i  e o r  

which is the well known logarithmic ,velocity profile. Figure 13 shows the 

close correspondence between this ,velocity profile and Von Karman's three- 

layer model (48). The main difference lies in the fact that 'very close to 

the wa.11, Von Karman's profile assumes a total absence of turbulent effects. 

Diessler ( 5 3 )  proposed that this assumption of turbulence effects disappearing 

at an arbitrary distance from the wall is unrealistic and proposed his .velocity 

+ f profile valid for y < 26 which rendered E -t 0 as y + 0; beyond y+ = 26, M I 

Diessler used the logarithmic velocity profile. Spalding combined these con- 

cepts of Diessler and proposed his velocity profile given by Eq. (5.1). 

The assumption that this expression is ,valid for all 'values of film 

thickness thus yields an approximately linear ,velocity profile for thin films- 

near the leading edge o r  close to the heating surface, where ,viscous effects 

may be expected to be dominant and hence the flow more nearly laminar, and a 

logarithmic velocity profile for large ,values of film thickness away from the 

leading edge and heating surface, 
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( x i )  It has been observed tha t ,  i ngene ra l ,  t he  in t e r f ace  i s  not steady 

but t h a t  it o s c i l l a t e s  with considerable amplitude-of the  order of vapor f i l m  

thickness,  It may be an t ic ipa ted  t h a t  the  inf luence of these o s c i l l a t i o n s  on 

the  heat t r a n s f e r  r a t e s  i s  considerable and must be taken i n t o  account. As 

l i t t l e  i s  known about the  e f fec t  of such o s c i l l a t i o n s  on the  temperature and 

ve loc i ty  p ro f i l e s ,  t he  following simple approach w i l l  be adopted i n  an attempt 

t o  take i n t o  consideration the  i n t e r f a c i a l  o sc i l l a t ions .  It w i l l  be assumed 

t h a t  the dimensionless temperature p r o f i l e  i s  unaffected by the  osc i l l a t ions .  

This can be expressed as 

T -T 

'with 

7 ' 0  @ = O  f(0) = 0 

71'1 @ = 1  f ( 1 )  = 1 

and 

Consider the  case with a s teasy  in t e r f ace  where 6 i s  not a f'unction of 

time, denoted by 6( s)  and the corresponding heat flux by q'( s ) ~  Then 

I 
q ' ( s )  = k AT f ' ( 0 )  - 

It may be noted t h a t  f ( 7 )  i s  independent of time and hence f ' ( 0 )  i s  a constant.  
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Let 6 now be a funct ion of time denoted by 8 ( t ) e  Since the nature of the  

o s c i l l a t i o n  i s  not known, it i s  assumed t o  o s c i l l a t e  s inusoida l ly  about t h e  

above mean 'value 6(s) s o  t h a t  

6 ( t )  = 6 ( s )  + a s i n  Llrt 

= S ( S )  [l + b s i n  ut] 

Here 

a = amplitude of o sc i l l a t ions  

b = dimensionless amplitude - a 
s.( 

co - -  - f = frequency of o s c i l l a t i o n s  
2rr 

Then , q '  (t) , the  instantaneous heat t r a n s f e r  i s  given by 

1 
q ' ( t )  = k AT f ' ( 0 )  - 

t)  

k AT f ' ( 0 )  1 - - 
6(s )  1 + b s i n  ut 

Rep1 ac ing 

by q ' ( s ) ,  
s) 

The time averaged value of the  heat f l u x  i s  then obtained by 

(5.3) 



w i t h  

1 
C =  

4 1 - b  2 

The coe f f i c i en t  C i s  an 

(5.54 

indica t ion  of the  extent  of increase i n  heat  t r a n s f e r  

due t o  i n t e r f a c i a l  o s c i l l a t i o n s  and may be termed the  heat t r a n s f e r  enhancement 

coef f ic ien t ,  The maximum l imi t ing  ,value of "b" i s  uni ty ,  when the  l i qu id  comes 

i n  contact with the heating surface (a t  which point the  " f i l m  boi l ing" model 

breaks down). I ts  minimum value i s  zero, giving a steady in te r face .  I n  

general ,  0 - -  < b < l . a n d  the  'value of the  coe f f i c i en t  C - > 1. 

Thus the  e f f e c t  of i n t e r f a c i a l  o s c i l l a t i o n s  i s  t o  increase t h e  heat f l ux  

as  compared with a steady in te r face .  This i s  a l s o  confirmed by Coury and 

Dukler ( 5 0 )  who measured the  instantaneous heat  t r a n s f e r  r a t e s .  

yet ,  no way t o  pred ic t  the  amplitude of o s c i l l a t i o n s  from f i r s t  p r inc ip l e s  

There is, a s  

and the  value of "C" must be found by some other  means. One p o s s i b i l i t y  is 

t o  compute i t  from measurements of 'vapor f i l m  thickness,  and another i s  t o  

determine it empir ical ly  from measurements of heat  f lux.  This i s  discussed i n  

d e t a i l  under Chapter V I ,  "Results and Discussions. '' 

( x i i )  For the  'vapor film, boundary l aye r  equations a re  appl icable  and 

p = p(x)  . I n  pa r t i cu la r ,  p # p(y) a 

With these assumptions we have, from the  ,velocity p r o f i l e  

From the  expression f o r  shear s t r e s s  we have 
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or  

From assumption ( v i )  w e  have 

From assumption ( i v )  the  d i f f e r e n t i a l  form of energy equation takes  the  form 

Let t ing 

and, f o r  T = T 
S ’  

and subs t i t u t ing  Eq. (5 .9 )  i n  Eq, (5.8) we ge t  

de+ 1 - =  
EH/V + 1 

dY+ pr” 

,. (5.20) 



Noting, from Eq. (5.1) 

we get  

It has been assumed t h a t  the ,velocity p r o f i l e  and shear s t r e s s  d i s t r i b u t i o n  are 

not influenced by conditions a t  the  in te r face  and t h i s  leads t o  a symmetric 

veloci ty  d is t r ibu t ion ,  with the veloci ty  d i s t r i b u t i o n  i n  6/2 - -  < y < 6 being the  

mirror image of t h a t  i n  0 - -  < y < 6/2. Similarly,  f o r  the temperature we expect 

the temperature p r o f i l e  f o r  0 

of t h a t  i n  0 - -  < y < 6 / 2 .  

consideration of these p r o f i l e s  we expect the temperature a t  y = 6/2 t o  be 

+ 
i n  6/2 - -  < y < 6 t o  be the inverted mirror image 

These p r o f i l e s  a r e  indicated i n  Figure 14. From a 

+ 
+ T )/2. Denoting the corresponding dimensionless temperature by 0 /2, Eq. 

CTW s W 

(5.12) can be integrated t o  y ie ld  

+ + + + 
M where u i s  the value of u a t  y = 6 /2. It m a y  be noted t h a t  s ince 

Fs( u+) = F2( u ) + 1, f o r  Pr = 1, the temperature p r o f i l e  i s  i d e n t i c a l  with the  

veloci ty  p r o f i l e  i n  0 - -  < y < 6/2 and i s  the  inverted image of it i n  6/2 - -  < y < 6, 

From conservation of mass, f o r  the  control  volume with i t s  boundaries i n  the  

+ 

'vapor, Figure l 5 A  we have 

s6 pudy = & 
dx 0 ( 5.14) 
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Figure 14, Velocity and temperature profiles in vapor film. 



I 

i 

Figure 15. Control volume -film boflfng a 



where = r a t e  of mass crossing from the  liquid-vapor in te r face  i n t o  the con- 

t r o l  volume i n  the  vapor space, 

energy f o r  a steady flow process, control volume-Figure I..5B9 

To evaluate k we have from conservation of 

where 

H = enthalpy flow i n t o  the  control  ,volume 

= enthalpy flow out f r o m t h e  C.V. 

= heat t r a n s f e r  i n t o  the  C.V, 

i n  

Hout 

'in 

a l l  enthalpy terms are  referenced above the sa tura t ion  temperature of 'vapor. 

W = shaf t  work 
S 

Applying t h i s  t o  the cont ro l  volume (and noting t h a t  W 

width i n  the  z-direction 

= 0) we g e t  per u n i t  
S 

8 Io pu C T dy + q '  dx - q l  dx 
P w 

1 
= so pu Cp T dy + pu C T dy dx 

dx 0 P 

Here q' = heat f l u x  from the  heating surface and 
W 

qi 
= heat f l u x  from t h e  'vapor t o  the l i q u i d  a t  the  in te r face  

causing mass flux 

Replacing q! by h we obtain 

t o  cross  i n t o  the vapor space by evaporation of the l i q u i d ,  

1 fg 

+ pu Cp T dy (t: = hfg dx 0 ( 5.16) 



The l a s t  term i n  Eq. (5,16) represents  t h e  increase i n  enthalpy of the  vapor 

t h a t e n t e r s t h e  C,V. a t  x which f o r  ful ly  developed temperature p r o f i l e  i s  

zero, and t h e  increase i n  enthalpy of the mass k i n  crossing the  C.V. a t  the 

liquid-vapor interface.  A correct ion t o  take the  l a t te r  i n t o  account has 

been made by using the modified ,value h '  in place of h so tha t  Eq. (5.16) 
f €3 fg' 

takes the  form 

The L.H.S. of (5.14), a f t e r  changing t h e  ,variables, y ie lds  

+ s' pudy = 2 - d pv 5, ' / 2  u+ dy+ 
dx 0 dx 

+ U+ M +  = 2 - d pv .fo u F (u') du 
dx 3 

+ 
du 

+ M  = 2 p v F ( u ) -  4 M dx 

w i t h  

Subs t i tu t ing  Eqs ,  (5.17) and (7.18) i n t o  (5,14), we get  

+ 
l q ' o  du 

M 



Momentum equation applied to the control 'volume, Figure 1% consistant with 

assumption (xii) gives 

d 812 2 2-$ p u d y  = - * E - T  - 7  - P g 6  
dx 0 dx i W 

2 
L.H.S. of Eq. (5,20) = 2 1"' pu dy dx 0 

U' 
d M  + 

= 2 - J pu* v F (u') du 
dx 0 3 

+ 

where 

and 

From assumption (xii) we have 

= - P l g  

From assumption (v) we have 

( 5.20) 

( 5.22) 

( 5.24) 

( 5.25) P P 
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+ 
From Eq. (5-1) and de f in i t i on  of 6 , we obtain 

Combining Eqs. (5*20),  (5.21), (5.24), (5.25), and (5.26), we obtain 

4- 
du + + M  F ( u )  e + u * F  ( u )  - 5 M dx 6 M dx 

( 5.26) 

We thus  end up with a system of equations t o  be sokved, given by Eqs. 

(5.27) repeated below i n  sequence f o r  con- 

(5.28) * 

P C u*(T -T ) 
w s  

q ' ( s )  = 
e+ w 

+ 
du 

above system of equations, it i s  necessary t o  have the  'value of t he  heat t rans-  

+ 
f e r  enhancement coe f f i c i en t  C and t h e  values  of u and u* a t  some loca t ion  

M 
x = x ( say ) .  

0 
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The 'value of the coef f ic ien t  can be expected to be a function of both AT 

and the  height x f o r  a given l iqu id .  

l e s s  amplitude of o s c i l l a t i o n s  i s  r e l a t i v e l y  small near the leading edge where 

It may be expected t h a t  the  dimension- 

i n t e r f a c i a l  i n s t a b i l i t i e s  begin t o  appear., increasing with height thereaf te r ,  

There a re  no known ways of determining i t s  ,value and recourse w i l l  have t o  be 

taken t o  f ind  i t s  ,value by some semi-empirical re la t ionship  between C and 

another known parameter based on experimental r e s u l t s ,  A more de ta i led  d i s -  

cussion on the 'value of C and i t s  .variation with height i s  contained i n  Chap- 

t e r  VI., For t h e  present it i s  assumed t h a t  the  function C = C(x) i s  known. 

Bromley's cor re la t ions  (6) were f 
To i n i t i a l i z e  the  ,values of u* and u MY 

used, From h i s  solut ion we have 

AB2 2 
= - (rl-rl 1 2 

A62 - -  - 
8 U 

m a x  

Recasting these we obtain 



75 

+ 
From Eqs. (5.31), (5.33),  and ( 5034),  t h e  values of u 

any gi,ven ,value of x and the  numerical i n t eg ra t ion  of t h e  system of Eqs.  (%28) 

can be calculated f o r  M 

can proceed. These nonlinear equations were numerically solved on an IBM 360 

computer using Runga Kutta procedure, I n  t h e  a c t u a l  so lu t ion  t h e  numerical 

+ 
procedure was s t a r t e d  with u = 2 and t h e  corresponding values of x and u* com- M 

puted 



CHAPTER V I  

RESULTS AND DISCUSSIONS 

A. Val id i ty  of  Experimental Technique 

The object ive of t h e  present  work was to obtain l o c a l  heat t r a n s f e r  r a t e s  

i n  f i l m  boi l ing  on a plane v e r t i c a l  surface. T o  e l iminate  t h e  edge e f f e c t s  i n  

f i n i t e  plane surfaces,  c y l i n d r i c a l  surfaces were used; to obtain l o c a l  heat 

f l u x  values, t h e  time r a t e  o f  change of  enthalpy o f  t h e  t e s t  surface was com- 

puted. 

i n  enthalpy was due so le ly  to heat t r a n s f e r  to t h e  surrounding sa tura ted  l i q -  

uid. The v a l i d i t y  o f  t h e  use  of a c y l i n d r i c a l  surface under t r ans i en t  condi- 

Neglecting heat t r a n s f e r  by rad ia t ion ,  it was assumed t h a t  t h i s  change 
, 

t i o n s  to give da ta  f o r  plane surface uqder steady s t a t e  conditions and t h e  

assumption of negl ig ib le  r ad ia t ion  from t h e  surface w i l l  now be examined. 

1. SIMULATION OF A PLANE SURFACE BY A CYLINDRICAL SURFACE 

The p r inc ipa l  d i f fe rences  between a c y l i n d r i c a l  surface and a plane sur- 

face  a r i s e  from t w o  sources: e f f e c t  o f  surface tension and t h e  change i n  area 

with radius.  

Within t h e  vapor f i lm,surface tension i s  of no consideration. A t  t he  iR- 

t e r f ace ,  however, i t s  e f f e c t s  on t h e  pressure wi th in  t h e  vapor film should be 

considered as  c y l i n d r i c a l  t e s t  surfaces  were used. One of t h e  assumptions i n  

t h e  analysis  i s  t h a t  t h e  pressure i n  t h e  vaporfilm is a function of t h e  height 

x only and does not vary i n  a horizontal  plane. fit a t  t h e  in te r face ,  because 
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of  t h e  curvature  of t h e  tes t  surface,  surface tension introduces a pressure 

d i f fe rence  between t h e  l i q u i d  and t h e  vapor, whose magnitude i s  given by 

AP' = "(t + 9 (6.1) 

where R and R a r e  t h e  p r inc ipa l  r a d i i  of  curvature. One of t h e  p r inc ipa l  

r a d i i  of  curvature w i l l  be taken t o  be t h e  minimum radius  of t h e  t e s t  surface 

equal t o  0 .5  in. i n  t h e  present experiments. The curvature i n  t h e  v e r t i c a l  

plane i s  caused by t h e  thickening of t h e  vapor film and in t e r f ac i a lwaves .  

There i s  some d i f f i c u l t y  i n  es t imat ing the  value of  % but f o r  s impl ic i ty  it 

w i l l  be a r b i t r a r i l y  s e t  equal t o  R 

dynes/cm = 63.4 x 10-51bf/ft so t h a t  AP" = $.?4 x l@ 

0 = 8.8 dynes/cm = 14.4 x 

The lowest pressure a t  which t h e  experiments were run was = 14.7 ps i a  

l b f / f t  ) so  t h a t  i n  comparison with t h i s  pressure,  t h e  change i n  pressure a t  

t h e  in t e r f ace  due t o  surface tens ion  is, indeed, negl igible .  

H v 

o 
so  t h a t  AP = 2o/R H H' 

-2 

For ni t rogen u = 8.8 

lb f / f t2 .  For hydrogen 

-2 
l b f / f t  so t h a t  AP" = 0.692 x 10 lb f / f t2 .  

(2140 

2 

It i s  possible  t h a t  a t  t h e  leading edge R i s  small and APu i s  of some H 

signif icance.  

case,  they a r e  confined t o  a very small  height from t h e  leading edge. 

But such e f f e c t s  a t  t h e  leading edge a re  ignored as,  i n  any 

The change i n  area with rad ius  can be  ignored if t h e  r a t i o  o f  t h e  vapor 

film thickness  t o  t h e  rad ius  o f  t h e  heating surface 8/r i s  much l e s s  than 

unity. From t h e  so lu t ion  t o  t h e  system of Eqs. (5.28) r e s u l t i n g  from t h e  

present  analysis ,  t h e  value of t h i s  r a t i o  6/r l i es  between 0 .1  and 0.05. 

t h e  results of t h e  photographic s tud ie s  it has a value between 0.1 and 0.2. 

From 
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To show t h a t  t h e  geometrical e f f e c t s  of using a cy l ind r i ca l  t e s t  surface 

as  compared with a plane surface a r e  negl igible ,  reference i s  made to Figure 

16 where heat f l u x  values obtained from 1 in. dia. cy l ind r i ca l  t e s t  surfaces  

and those obtained from 2-1/4 in.  d i a  t e s t  surfaces  a t  t h e  common loca t ion  of 

3 in.  above t h e  leading edge a r e  represented. 

represents  t h e  mean of a number of runs made with a t e s t  surface,  t h e  number 

of such runs being indicated next to each da ta  point.  The range o f  values ob- 

t a ined  with each surface i s  indicated by a v e r t i c a l  l i ne ,  passing through t h e  

point ,  t h e  extremit ies  of  which represent  t h e  maximum and minimum values ob- 

ta ined  with t h e  t es t  surface. If t h e  geometry of t h e  t es t  surface had any 

appreciable e f f e c t  on heat t r a n s f e r  r a t e s ,  heat f l u x  values obtained with 

2-1/4 in. d ia  t e s t  surfaces  would have been considerably d i f f e r e n t  from those 

obtained with 1 in.  d i a  tes t  surfaces.  Within t h e  s c a t t e r  of  experimental 

data,  heat flux values obtained with 2-1/4 in. d i a  t e s t  surface agree with 

those obtained with 1 in.  d i a  t e s t  surfaces  and it i s  concluded t h a t  f o r  t h e  

present  appl icat ions,  t h e  use of  c y l i n d r i c a l  surfaces of  1 in. d i a  and above 

do not 'iwr.troduce any s ign i f i can t  e r r o r s  due to e f f e c t s  of  geometry and surface 

tensfon as  compared with a plane surface. 

Each da ta  point  i n  Figure 16 

2. USE OF TRCINSIENT TECHl'aIQUE TO OBTAIN STEADY STATE DATA 

To estimate t h e  e f f e c t  of employing a b k s i e n t  Cechnique to obtain da ta  

under steady s t a t e  conditions,  consider t h e  energy equation i n  its simplif ied 

form cons is ten t  with t h e  asswnptions made i n  Chapter V, "Model and Analysis," 

The d i f f e r e n t i a l  form of  t h e  energy equation f o r  t h e  t r ans i en t  case ( a s  
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Figure 16. 
and 2-1/4 i n ,  dfa heating surfaces. 

Comparison of heat flux-1 in,  d ia  
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opposed t o  t h e  steady case r e s u l t i n g  i n  Eq. ( 5 . 8 )  t akes  t h e  form 

If, i n  t h e  nondimensional form of Eq. (6.2), t h e  t i m e  r a t e  of change o f  tem-, 

pera ture  i s  shown t o  be small compared t o  unity,  t h e  t r a n s i e n t  technique can 

be expected t o  give r e s u l t s  c lose  t o  t h a t  under steady s t a t e  conditions. 

nondimensionalizing t h e  d i f f e r e n t  var iables ,  t h e  c h a r a c t e r i s t i c  temperature 

w f l l  be taken to be AT, t h e  d i f fe rence  between t h e  heater  surface temperature 

and t h e  sa tu ra t ion  temperature of  t h e  bo i l ing  l iqu id .  

w i l l  be based on a representa t ive  length and a representa t ive  velocity.  

choice of  a representa t ive  leng-bh w i l l  be t h e  height of  t h e  t e s t  piece 

I n  t h e  turbulent  regime,the average ve loc i ty  i s  c lose  t o  t h e  max-velocity and 

For 

The c h a r a c t e r i s t i c  time 

The 

L. 

hence an a r b i t r a r y  value of 0.75 U w i l l  be taken t o  be t h e  cha rac t e r i s t i c  
max 

velocity.  With these  nondimensional parameters, we have 

T e = - -  
AT 

( 6 . 3 )  

'Y Y = y/L ' = pC uAT 
P 

and 



If he/& << 1, aQ/&Y can be assumed t o  be zero, which i s  the steady s t a t e  con- 

d i t ion .  

t h e  g rea t e s t  t i m e  r a t e  of change of temperature (equal  t o  t h a t  of t h e  t es t  

surface)  s ince  t h e  temperature of t h e  other boundary-the liquid-remains con- 

s t an t  a t  i t s  sa tura t ion  value. 

To f ind  t h e  value of de/aT, we note t h a t  a t  P = 0, t h e  vapor undergoes 

Computed values of a€)/& a re  given i n  Table VI: 

TABLE V I  

TMNSIENT TECHNIQ,UE--RATE OF 
CHANGE OF DIMENSIONLESS TEMPERATURE 

Liquid AT( OR) u ( f t / h r )  

LN2 315 66 ooo 0.5 9,000 0.00022 

LN2 

LH2 

LH2 100 4 5 , ~ O  0.5 10,000 0.0011 

100 45,000 0.5 5 9  700 0.00055 

400. 90, 000 0.5 24,000 0.00033 

I n  Table VI,u i s  taken as 0.75 u w i t h  u obtained from t h e  so lu t ions  of max’ max 

Eqs. (5.28). dT/& values a r e  experimental values. From these  computations 

it i s  seen t h a t  t h e  nondimensional time r a t e  of change of temperature i s  inc  

deed small and hence the  t r a n s i e n t  technique employed i n  t h e  present  experi-  

ments can be expected t o  give acceptable equivalent steady s t a t e  r e s u l t s .  

To fu r the r  t es t  t h e  v a l i d i t y  of t h e  t r a n s i e n t  technique employed i n  t h e  

present work t o  give data  under steady conditions,  comparison w i l l  be made be- 

tween heat f l u x  values obtained under these two conditions. 
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Column "A" i n  Table V I 1  gives average heat f l u x  values obtained with the  

steady s t a t e  t e s t  surface used fo r  photographic s tud ies  described i n  Section 

A-2, Chapter 11. 

possible  t o  measure only t h e  overa l l  mean heat t r ans fe r  ra te .  

g5ves the  integrated heat f l ux  values computed by using the  loca l  heat t rans-  

f e r  r a t e s  obtained w i t h  t h e  t r ans i en t  technique. These two a re  seen t o  agree 

qui te  w e l l ,  thus indicat ing t h a t  employing the  t r ans i en t  technique t o  obtain 

steady s t a t e  values i s  acceptable. 

This t e s t  surface was one continuous piece and hence it i s  

Column "B" 

TABLE V I 1  

COMPARISON OF HEAT FLUX VALUES OBTAINED UNDER 
STEADY STATE CONDITIONS AND TRANSIENT CONDITIONS 

LIQUID NITROGEN 

B 
(Steady S ta t e '  (Transient Btu/hr f t2 )  

Btu/hr ft9 

315 

200 

100 

7050-7350 

4690 

34 00 

7011 

4692 

3543 

3. HEAT TRANSFER BY RADIATION 

It i s  assumed t h a t  t h e  vapor i s  t ransparent  t o  rad ian t  heat f l u x  from 

the  ambient or t he  heater surface. In  order t o  assess  t h e  heat t r ans fe r  by 

rad ia t ion  from the  t e s t  surface, several  conservative assthptions w i l l  be made. 

In  the  present s e r i e s  of experiments r e l a t i v e l y  low heater surface temperatures 



83 

of t h e  order of 500°R were used. The heater  surface was immersed i n  l i q u i d  

nitrogen or l i q u i d  hydrogen, and t o  obtain t h e  upper l i m i t  of heat t r a n s f e r  

by r ad ia t ion  an ambient temperature of 0"R w i l l  be assumed. For copper,values 

of 0.01-0.07 Btu/hr f t2  "R a r e  given f o r  t h e  emissivi ty  (37), t h e  lower value 

being f o r  polished surface and t h e  higher value for "commercial, scraped shiny 

but  not mirror- l ike"  surface. The t e s t  surfaces  used were given "mirror-like' '  

f i n i s h  but again, t o  f i n d  the  upper l i m i t ,  t h e  higher value f o r  emissivi ty  

w i l l  be used. 

have 

4 

With these  values, fo r  a t es t  surface temperature of 500°R, we 

-8 4 
= 0.072 x 0.1713 x i o  x 300 

= 7.7 Btu/hr ft 

'' Radiation 

2 

For lower temperatures, these  a r e  much lower and fo r  a l l  surface temperatures 

used,, t h i s  forms l e s s  than  0.1% of t h e  computed heat f l u x  and therefore  ig -  

nored. 

B. Results 

Figures 17-26 a r e  p l o t s  o f  experimental values of heat f l u x  q '  vs. height 

of  t h e  tes t  surface.  Each of  Figures 17-24 includes:  

( i) Experimental data  f o r  one value of AT. 

o f  s eve ra l  runs under i d e n t i c a l  conditions,  t h e  v e r t i c a l  l i n e  

through each point  showing t h e  maximum and minimum of experimental 

values obtained. 

The da ta  poin t  i s  t h e  mean 
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Figure 17* Effect of height-on heat flux-film boiling. LN2* AT = 315"R. 
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4 

Figure 18. Effect of height on heat flux-film boiling. LN2. AT = 251°R. 
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I I I I I 

- 

Figure 19. Effect of height on heat flux-film boi l ing.  LN2. AT = 204'R. 
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I I 

Ffgure 20. Effect of height on heat flux-film boiling. LN2. AT = 100% 
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4 

Figure 21. Effect of height on heat flux--film boi l ing .  LH2. AT = 400"R. 

Figure 22, Effect of height on heat f lux-fi lm boi l ing.  LH2. AT = 3OO"R. 
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Figure 23. Effect of height on heat flux-film boiling, LE2. AT = 200"R. 

I I I I I 
3 

Figure 24, Effect of hefght on heat flux-film boilfng. LH2. AT = 100"R, 
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Figure 25. Effect of hei&t, gravfty, and subcooling on heat flux. LN2. 
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Figure 26. Effect of height, gravity, and subcoolfng on heat flux. q. 
.. . 



(ii) .Severa l  curves showing va r i a t ion  of heat f l u x  with height as  pre- 

d ic ted  from t h e  present  analysis-Eqs. (5.28) f o r  d i f f e r e n t  values 

of t h e  heat t r a c s f e r  enhancement coef f ic ien t ,  C, which ind ica tes  

t h e  influence of i n t e r f a c i a l  o sc i l l a t ions .  

value o f  C f o r  each curve, assumed constant over t h e  e n t i r e  height, 

i s  indicated i n  t h e  p lo t s .  

Predictions from t h e  laminar analysis  of  Eiromley (6 )  and from t h e  

turbulen t  model of Hsu (39). 

The corresponding 

(iii) 

Figures 17-20 a r e  f o r  l i q u i d  ni t rogen a t  nominal AT values of 315"R, 

251°R, 204"R, and 100"R a t  0.5 ps ig  and a/g = 1 and Figures 21-24 a r e  f o r  l i q -  

uid hydrogen a t  nominal AT values of 400"R, 300°R, 200°R, and 100"R a t  0.5 

ps ig  and a/g = 1. Five s e t s  of da ta  were taken i n  l i q u i d  nitrogen a t  each 

tes t  condition. The p l o t s  i n  Figures 17-20 include da ta  obtained from both 

1 in. d i a  and 2-1/4 in.  d i a  t es t  surfaces.  Figures 21-24 f o r  l i q u i d  hydro- 

gen represent  t h e  mean of experimental values from three runs with 1 in. d i a  

t es t  s u r f  aces. 

Figures 25 and 26 show: 

(0  

(ii) 

(iii) 

N 

Experimental values o f  heat f l u x  vs. height f o r  a/g = 1, a/g = 

0.908 for one value of AT a t  0.5 psig.  

Experimental values o f  heat f l u x  vs. height f o r  subcooled l i q u i d  

f o r  one value o f  AT a t  a/g = 1, a t  a pressure higher than 0 - 5  psig.  

Bromley's (6 )  predict ions of q t  - x f o r  a/g = 0.008 and a/g = 0.016 

for l i q u i d  ni t rogen and a/g = 0.008 f o r  l i q u i d  hydrogen. 
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( i v )  Predict ions of  q '  vs. x from present  ana lys i s  with a constant heat 

t r a n s f e r  enhancement coe f f i c i en t  C = 1.8 for l i q u i d  ni t rogen and 

2 .4  f o r  l i q u i d  hydrogen. 

Figure 23 shows t h e  above q '  vs. x values fo r  l i q u i d  nitrogen; a subcool- 

Figure 26 i s  a s imi la r  p l o t  f o r  l i q u i d  ing of 21.1"R a t  34 ps ig  was obtained. 

hydrogen; a subcooling of 8 . 1 ' ~  a t  a pressure of 32.5 ps ig  was obtained. 

I n  computing t h e  pred ic t ions  from t h e  present  analysis ,  p roper t ies  of  

nitrogen and hydrogen were evaluated a t  t h e  f i l m  temperature-the ar i thmetic  

mean of t h e  surface and l i q u i d  temperatures. Appendix E gives t h e  values 

/ used i n  t h e  ana lys i s  for nitrogen and hydrogen and t h e i r  sources. 

C. Discussion 

1. VALIDITY OF L A M I N R  ANALYSIS 

In  Figures 17-24, it i s  c l e a r l y  seen t h a t  t h e  laminar analysis  of  Bromley 

(6)  with a steady in t e r f ace  pred ic t s  much lower values than obtained, t h e  de- 

par ture  of pred ic t ions  from experimental values being grea te r  f o r  higher 

values of  x. For l i q u i d  nitrogen, for example, a t  a AT = 315"R experimental 

values a re  18.2% higher a t  a height of  1/4 in. and 212% higher a t  a height of 

5-3/8 in.  than predicted by laminar analysis.  For l i q u i d  hydrogen, a t  a 

AT = 400°R, t h e  corresponding f igures  a re  4.25% and 171%. 

t h a t  t h e  assumptions under which Bromley derived h i s  cor re la t ions  a re  probably 

va l id  only near t h e  leading edge. 

This t rend shows 
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O f  g rea te r  importance than t h e  deviat ion from experimental values i s  t h e  

q u a l i t a t i v e  d i f fe rence  between t h e  predict ions and ac tua l  values. Laminar 

analysis  (6)  p red ic t s  a heat f l u x  which i s  a continuously decreasing funct ion 

of height. But experimental values c l e a r l y  e s t ab l i sh  t h a t  t he re  i s  a reduc- 

t i o n  i n  heat f l u x  with height  f o r  small  values of  t h e  height x, though t h e  

reduction i s  not as  high a s  predicted i n  t h e  laminar analysis ,  t h e  heat f l u x  

reaches a minimum value and reversing t h e  trend, begins t o  increase with 

height;  t h e  r a t e  of increase i s  much smaller than t h e  r a t e  of  reduction ob- 

served c lose  t o  t h e  leading edge. 

' 2,  EFFECT OF TURBULENCE 

The f irst  attempt t o  explain t h i s  departure of experimental values from 

those predicted by laminar ana lys i s  was made by Hsu (39). He used a two-layer 

model i n  t h e  turbulent  region, a laminar sublayer adjacent t o  t h e  heating sur- 

face  where both t h e  ve loc i ty  and temperature d i s t r ibu t ions  a r e  l inear ,  and a 

turbulent  core where both ve loc i ty  and temperature a r e  uniform; t h e  in t e r f ace  

was assumed t o  be steady and smooth. The predict ions using h i s  ana lys i s  a r e  

a l so  shown i n  Figures 17-24. 

bulent core i s  t h e  sa tu ra t ion  temperature and a l l  t h e  temperature drop takes  

p lace  i n  t h e  laminar sublayer appears u n r e a l i s t i c  and has been questioned by 

Dougall and Rohsenow ( 5 6 ) .  In l i q u i d  nitrogen, experimental values a r e  lower 

than predic t ions  from Hsu's theory-about 5% lower at AT = 315"R and height 

H i s  assumption t h a t  t h e  temperature i n  t h e  t u r -  

x = 5-5/8 in. The predic t ions  a re  high fo r  other values of AT i n  l i q u i d  n i -  

trogen; t h e  extent of deviat ion var ies  with height,  being low f o r  low values 
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of x and then  progressively increasing w i t h  x. 

dic t ions  a r e  high f o r  low values of  AT but t h i s  deviat ion decreases with 'an 

increase i n  AT, till a t  AT = 400°R, Hsu's pred ic t ions  a re  almost a perfect f i t  

f o r  t h e  experimental data.  Considering the  s impl i f ica t ions  made i n  h i s  model, 

t h i s  f i t  i s  indeed remarkable. 

For l i q u i d  hydrogen, t he  pre- 

So f a r ,  no d e f i n i t e  study has been made t o  determine the  onset of turbu- 

lence i n  f i l m  boil ing.  Generally, attempts have been made t o  apply t h e  t r a d i -  

t i o n a l l y  accepted views on t r a n s i t i o n  t o  f i lm boi l ing  w i t h  some modificaticns. 

In condensation, values of  t r a n s i t i o n  Reynolds number based on equivalent hy- 

, draul ic  diameter, 4l"/fi = 1800 t o  430 (s) have been used. For f i lm  boi l ing  

Hsu (39) used a value o f  R e  = 100 t o  s ign i fy  t r a n s i t i o n  t o  turbulence, t he  

Reynolds number being evaluated a t  t h e  maximum vapor velocity.  

work Coury and Dukler ( 5 C )  have used a value of 35 f o r  the  t r a n s i t i o n  Reynolds 

number i n  film boi l ing.  

In a recent 

There a re  severa l  complications t h a t  mus t  be considered i n  specifying 

t h e  t r a n s i t i o n  of t h e  laminar vapor flow t o  turbulen t  flow. 

por iza t ion  a t  an in te r face ,  which i s  physical ly  equivalent t o  blowing, and 

heat t r a n s f e r  from a surface have des t ab i l i z ing  e f f e c t s  (48). It has a l so  

beer, remarked (48)  t h a t  t he re  i s  a p o s s i b i l i t y  t h a t  t h e  decrease i n  t h e  v is -  

c o s i t y  of l i q u i d  a t  higher temperatures may have a s t a b i l i z i n g  e f fec t .  

Frederking (35 )  has given a l i nea r i zed  ana lys i s  of t h e  onset of i n s t a b i l i t y  

i n  f i l m  bo i l ing  but,  a s  he has a l so  remarked, t h e  onset of  i n s t a b i l i t y  does 

not necessar i ly  ind ica t e  t h a t  t r a n s i t i o n  t o  turbulence w i l l  t ake  place. 

I n  general ,  va- 

He has 



reported values of t r a n s i t i o n  Reynolds number ranging f rom 15 t o  200 f o r  f a l l -  

ing  l i q u i d  fi lms. 

I n  t h e  present  approximate analysis ,  no c r i t i c a l  Reynolds number has been 

used to s ign i fy  t r a n s i t i o n  to turbulence. 

and Analysis," t h e  universa l  ve loc i ty  p r o f i l e  (Eq. (5.1)) used i s  assumed 

va l id  i n  t h e  e n t i r e  f l o w  f i e ld .  This gives a s t r a i g h t  l i n e  ve loc i ty  d i s t r i -  

but ion and a very small value of fH/v (compared with l /Pr )  f o r  small values 

of dimensionless f i lm  thickness y+. The flow can be expected to be laminar 

f o r  small values of y+ when molecular d i f fus ion  predominates over any turbu- 

l e n t  e f f ec t s .  

the p r o f i l e  employed a r e  given i n  d e t a i l  f o r  values of  y+ up to 10 i n  Table 

A s  indicated i n  Chapter V, "Model 

The values of  E / v  as  a funct ion of y+,Eqs. (5.6) and (5.7), f o r  H 
1 

VIII, Figure 

and Figure 27 

heat t r a n s f e r  

4- 

W 
e 

27 shows a p l o t  o f  y+, R e  (=  2I'/p) and E$V. 

it i s  seen t h a t  E v i s  qu i t e  small  f o r  small  vaLues of  y+. The 

From Table V I 1 1  

d 
across t h e  vapor film i s  given by Eq. (5.13) reproduced below: 

(5.1.3) 

N e 
where F ( u  ) = Em/v = tH/v-  

10-1 f o r  y - < 5 and begins to increase until it i s  of t h e  same order as l /Pr  

a t  around y = 10; the rea f t e r  it begins t o  increase rEpidly and f o r  y+ 'I 40, 

l /Pr  becomes in s ign i f i can t  i n  comparison with E / v ,  ind ica t ing  t h a t  i n  t h i s  

region molecular d i f fus ion  is of l i t t l e  importarzce compared with eddy d i f f u s i -  

vidy. This implies t h a t  s o  f a r  as eddy d i f f u s i v i t y  or t h e  e f f e c t s  of  turbu- 

lence on heat t r a n s f e r  i s  concerned, it begins t o  be of s ign i f icance  a t  

For 1/Pr - L O ,  then E ~ / V  i s  less than 0.46 x 2 
+ 

-k 

H 
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TABU V I 1 1  

VALUES OF EDDY DIFFUSIVITIES 

+ 
Y 

0. 2 

0.4 

0.6 

1 .0  

2.0 

3.0 

4.0 

5.0 

/ 

6 . 1  

0.68 x lom7 

0.12 

0.62 

0.5 

0.49 x lo-2 

0.88 x I O m 3  

0.17 x lom1 

0.46 x -LO-' 

0.11 

+ 
Y E H/v 

7. 3 

8 .6  

10.1 

-12. 2 

19. 1 

33- 9 

67. 9 

146.7 

328.6 

0.22 

0.43 

0.78 

1. 37 

3.83 

9.86 

24.13 

57.22 

132.97 

3-, 
y - 10. 

y 

Iff 'Re i s  defined on t h e  bas i s  of  mass flow r a t e ,  Re = 2I'/p, 

-!- 
= 10 corresponds t o  a Re 'Z 100. It i s  in t e re s t ing  to note t h a t  Hsu (39) 

a l so  used a R e  = 100 to s ign i fy  t r a n s i t i o n  of laminar vapor f i l m  to turbulence 

in h i s  analysis ,  though based ofi a somewhat d i f f e r e n t  reasoning. 

The p r o f i l e  used implies a Reynolds number based on mass r a t e  of  flow 

+ 
which depends on t h e  value of y . If one used Von Karman's three- layer  model 

4- 

instead, then y = 30 f o r  t h e  turbulent  core, and implies a t r a n s i t i o n  min 

R e  = 600. Considering t h e  des t ab i l i z ing  e f f ec t s  of .vaporizat ion a t  t h e  l iqu id-  

vapor in t e r f ace  and heat t r a n s f e r  from t h e  surface i n  f i l m  boi l ing,  it seems 

more appropriate to consider t h a t  turbulent  e f f ec t s  begin to appear a t  values 
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of Re  lower than t h a t  imp l i c i t  i n  t he  three-layer model. Therefore, a s  an 

a l t e rna t ive ,  port ions of t h e  three- layer  model may be used as  appropriate,  

depending on t h e  value of y e The universa l  ve loc i ty  p r o f i l e  employed here 

has t h e  advantage t h a t  it i s  a reasonably good approximation f o r  a l l  values o 

+ 
max 

+ + 
u (and y ). As has been remarked ear laer ,  E H / V  becomes s ign i f i can t  
max max 

+ + 
around y = 10 and R e  100 f o r  l/Pr 1. Also above y = 10, t h e  v e l m i t y  

d i s t r i b u t i o n  begins t o  show logarithmic behavior. Hence it may be considered 

N t h a t  a c r i t i c a l  t r a n s i t i o n  R e  - 100 i s  implied i n  t h e  present  analysis ,  above 

which turbulence e f f e c t s  begin t o  dominate mer molecular diffusion.  
, 

Using t h e  ve loc i ty  p r o f i l e  Eq. (3.1) and t h e  implied values of eddy d i f -  

f u s i v i t i e s ,  and igcoring t h e  e f f e c t s  of i n t e r f a c i a l  o sc i l l a t ions ,  predict ions 

from t h e  present  ana lys i s  a r e  shown i n  Figure 17, w i t h  C = 1.0. 

higher heat f l u x  values than predicted by laminar ana lys i s  (6), t h e  heat f l u x  

reaches a minimum and begins t o  increase gradually. 

t i ons  show the  same t r end  as  experimental values 'but t h e  departure from t h e  

experimental values i s  s ignif icant- the pred ic t ion  being about 5 @  lower than 

t h e  ac tua l  value a t  a height of 5-5/8 in.  f o r  l i q u i d  nitrogen a t  a AT = 315OR. 

The height a t  which t h e  minimum heat f l ux  i s  predicted i s  a l s o  considerably 

grea te r  than obtained i n  experiments. It is, therefore ,  c l e a r  t h a t  t h e  onset 

of  turbulence alone w i l l  not explain a l l  t h e  departures from laminar analyses. 

This p red ic t s  

Qua l i t a t ive ly  t h e  predic- 

3. EFFECT O F  INTERFACIAL OSCILLATIONS 

In  t h e  previous sect ion,  it was concluded t h a t  t h e  onset of turbulence 

alone i s  not s u f f i c i e n t  t o  explain t h e  departure of predict ions from 
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experimental values. 

i n t e r f a c i a l  o s c i l l a t i o n s  w i l l  increase heat t r a n s f e r  r a t e s  as  compared with a 

In  Chapter V, under assumption ( i x )  it was shown t h a t  

smooth steady in te r face .  

Figures 28-34 show photographs of film boi l ing  i n  l i qu id  ni t rogen f o r  AT 

values of 315"R, 204OR, and 100"R a t  t h ree  d i f f e r e n t  heights. The sca l e  of  

t h e  photographs, pos i t ion  and AT a r e  indicated i n  eacn set of  photographs. 

These were taken with a high-speed camera and t h e  e f f ec t ive  fi lming speed f o r  

each s e t  i s  indicated i n  terms o f  frames per  second. A s  can be seen from t h e  

photographs, t h e  vapor i s  opaque to t h e  l i g h t  from t h e  source and i n  order to 

determine t h e  loca t ion  of t h e  heating surface a f ew frames were double exposed 

when the re  was no boi l ing.  Such a double exposed frame i s  a l so  shown i n  each 
1 

set. To e s t ab l i sh  t h e  locat ion,  x, of t h e  heating surface and t h e  sca l e  f o r  

t h e  photographs a .040 in .  d i a  w i r e  wi th  pinch marks a t  regular  i n t e rva l s  was 

s t re tched  p a r a l l e l  to t h e  heating surface and can be seen i n  t h e  photographs. 

Photographs i n  Figures 28, 31, and 33 show t h a t  even very c lose  t o  t h e  

leading edge, t h e  in t e r f ace  begins t o  o s c i l l a t e  and t h e  assumption of a steady 

in te r face ,  except, possibly,  very c lose  t o  t h e  leading edge i s  un rea l i s t i c ,  

p a r t i c u l a r l y  wi th  t h e  la rge  amplitudes of o sc i l l a t ions  observed a t  some d is -  

tance away from t h e  leading edge which tends t o  enhance heat t r a n s f e r  r a t e s  

considerably. 

Fkderking (35) has given an ana ly t i ca l  so lu t ion  to t h e  problem of i n t e r -  

f a c i a l  i n s t a b i l i t y  i n  f i lm  bo i l ing  assuming a parabol ic  ve loc i ty  p r o f i l e  f o r  

t h e  vapor fi lm. He concludes t h a t  f o r  a l l  values o f  Re the re  i s  a f i n i t e  

range of  unstable wave numbers such t h a t  t h e  flow never i s  completely s table .  

€j9 
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Figure 30. Film boilfng: LN2; AT = 315"R; x = 4-5 in,; 110 frames/sec, 
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a0 r- 0 - 0, 

0 



This analysis  i s  based on a plane in te r face .  I n  f i lm boi l ing  t h e r e  i s  a th ick-  

ening of t h e  vapor f i lm  because of vaporization of t h e  l iqu id ,  giving r ise t o  

a f i n i t e  curvature of t h e  in te r face .  This  i s  p a r t i c u l a r l y  s ign i f i can t  near 

t h e  leading edge as  can be observed from Figures 28, 31 and 33, showing photo- 

graphs o f  film boi l ing  i n  l i q u i d  ni t rogen near t h e  leading edge and i s  a l s o  in- 

dicated i n  Figure 35 showing t h e  model f o r  pred ic t ing  t h e  i n s t a b i l i t y  of the  

in te r face .  Analysis f o r  two f l u i d s  of d i f f e r e n t  dens i t i e s  flowing w i t h  some 

r e l a t i v e  ve loc i ty  u (32) shows t h a t  t he  c r i t i c a l  wavelengths fo r  small  veloci-  

t i e s  a r e  large.  Hence the  onset of  i n s t a b i l i t y  i s  indicated by t h e  appearance 

of waves o f  long wavelengths. 

being zero a t  t h e  leading edge i t s e l f ,  and hence t h e  c r i t i c a l  wavelengths a re  

la rge  i n  t h i s  region. The questior, then i s ,  does t h e  finiCe curvature o f - the  

in t e r f ace  a t  t h e  leading edge i c h i b i t  the  appearance of waves of wavelength 

l a rge r  than a c e r t a i n  mult iple  o f  t h e  height? 

showing t h e  model f o r  i n s t a b i l i t y ,  a s  an approximation one can v i sua l i ze  t h e  

curved in t e r f ace  near t h e  leading edge t o  be a p a r t  of a wave, of wavelength 

nx, where n i s  an in teger  and x i s  t h e  d is tance  from t h e  leading edge. 

any height, t h e  vapor f i l m  thickness 6 i s  increasing w i t h  t h e  height x because 

of t h e  vaporization of t h e  l i q u i d  and hence d6/dx i s  pos i t i ve  a t  every x s o  

t h a t  n cannot take a value l e s s  than 4. 

Near t h e  leading edge, ve loc i t i e s  a r e  small, 
1 

A s  indicated i n  Figure 35 

A t  

Thus t h e  longest  wavelength of any d i s -  I 

turbance that can be superimposed on t h e  in t e r f ace  i s  h - < 4x. 

x = x We may now hypothesize t h a t  

t i es  t o  occur a t  x the  c r i t i c a l  wavelength h < 4x ; i f  h > 

t h e  vapor ve loc i ty  i s  u 
o 9  0 

0’ c -  0 C 

A t  a given height 

f o r  i n s t a b i l i -  

4x it i s  a 
0 



, 

s t ab le  configuration. 

v e r t i c a l  plane with one f l u i d  ( l i q u i d  i n  t h e  present case)  s ta t ionary,  t h e  

condition fo r  t h e  s t a b i l i t y  of t h e  in t e r f ace  given by 

From Reference 52,  we have f o r  p a r a l l e l  flows i n  a 

2 ka a a u  < -  
1 2  P+P, 

where 

2ll 
k = wave number = - A 

( 6 . 5 )  

s 

I, 

A = wavelength 

d = surface tension 
Figure 35. Model for predict ing 
i n s t a b i l i t y  of in te r face .  

From Eq. ( 6 . 5 ) ,  t h e  c r i t i c a l  wave number i s  given by 

2 u - -- 
kc - P,P a 

Thus every height x i s  associated J i th  a c r i t i c a l  wavelength and wave number 

A and k and a c r i t i c a l  ve loc i ty  u given by Eq. ( 6 . 6 ) .  A l s o ,  from t h e  lam- 

i na r  solut ion ( 6 ) ,  a t  a given x t h e  vapor has a maximum veloc i ty  u 

hypothesized t h a t  i f  a t  any given value of x, u ( x )  

t i e s  a r e  possible;  i f  u (x) < u (x )  then it i s  a s t ab le  configuration. 

c: C C 

It i s  
V' 

> u ( x )  then i n s t a b i l i -  
V C 

V C 

Figure $ i S  a p l o t  of u and u vs. x f o r  l i q u i d  nitrogen and l i qu id  
V C 

hydrogen a t  d i f f e ren t  values of AT. A t  some x = x u ( x )  = u ( x )  and c' v C 
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i n t e r f a c i a l  i n s t a b i l i t i e s  appear. it i s  hypothesized t h a t  

t h e  in t e r f ace  i s  s tab le .  Figure 37 i s  a s imi la r  p l o t  f o r  l i qu id  ni t rogen for  

a/g = 0.008. 

To t h e  l e f t  of x c 9  

From these  p l o t s  it can be seen t h a t  t h e  g rea t e s t  height over which t h e  

(0.17 i n . )  f o r  l i q u i d  in t e r f ace  can be expected t o  be s t a b l e  i s  14 x 

nitrogen a t  AT = 100°R, a very small region. 

cu la t ions ,  supported by l i nea r i zed  analyses and photographic s tudies ,  it can 

be concluded t h a t  a steady in te r face ,  i f  it e x i s t s ,  w i l l  be l imi ted  t o  an ex- 

tremely small region under normal grav i ty  conditions. For l i q u i d  ni t rogen a t  

a/g = 0.008, however, i n s t a b i l i t i e s  appear a t  a height of approximately 0.23 

f t  (2.8 in.  ). 

"Effect of Reducing Gravity. If 

Thus from these approximate ca l -  

This w i l l  be discussed i n  grea te r  d e t a i l  under Section 5, 

From t h e  above discussion it i s  c l e a r  t h a t  i n t e r f a c i a l  o s c i l l a t i o n s  ap- 

pear q u i t e  c lose  t o  t h e  leading edge, and under assumption ( i x )  Chapter V it 

has been shown t h a t  t h e  e f f e c t  of such o s c i l l a t i o n s  is  t o  increase t h e  heat 

t r a n s f e r  r a t e s .  This i s  a l s o  confirmed i n  a recent  paper by Coury and Dukler 

(50).  

i n  grea te r  d e t a i l  i n  Section 7, "Effect of Height on Heat Transfer Coeffi-  

c i en t , "  c l e a r l y  e s t a b l i s h  t h a t  t h e  amplitude of i n t e r f a c i a l  o s c i l l a t i o n s  a r e  

of t h e  same order a s  t h e  vapor film thickness.  

Analyses of photographs such as  reproduced i n  Figures 28-34 discussed 

Recall ing from Eq. (5 .5a)  t h a t  

t h e  increase i n  heat t r a n s f e r  due t o  i n t e r f a c i a l  o s c i l l a t i o n s  i s  given by 
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Figure 37. C r i t i c a l  ve loc i ty  vs. height f o r  i n t e r f a c i a l  veloci ty:  
a/g = 0.008. 
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with such o s c i l l a t i o n s  b takes  a value not very d i f f e r e n t  from 1 and hence 

t h e  value of C can be q u i t e  high. 

Equations (5.28) were solved numerically f o r  severa l  values of  t h e  heat 

t r a n s f e r  enhancement coe f f i c i en t  f o r  both l i q u i d  ni t rogen and l i q u i d  hydrogen 

f o r  t h e  values o f  AT f o r  which experimental da ta  were obtained. Curves show- 

ing these  pred ic t ions  a re  p l o t t e d  i n  Figures 17-24. It may be observed t h a t  

t h e  present analysis ,  even with a C-value independent of  t h e  height x, comes 

c lose r  t o  t he  experimental values both quant i ta t ive ly  and qua l i t a t ive ly  f o r  

both l iqu id  ni t rogen and hydrogen than e i t h e r  of t h e  two predict ions consid- 

ered s o  f a r  (6,39) i f  an appropriate  value of C i s  used. 

t h e  g rea t e s t  deviat ion near t h e  leading edge, p a r t i c u l a r l y  i n  l i q u i d  nitrogen. 

I n  l i q u i d  ni t rogen t h e  extent  of deviat ion i s  given i n  Table I X ,  

I n  general  t h e  g rea t e s t  departure  from t h e  predict ions i s  observed wi th in  

This analysis  shows 

1 in.  from t h e  leading edge, and i f  t h i s  i s  omitted, t h e  l i m i t s  on deviat ion 

a r e  considerably reduced, a s  can be seen from t h e  l a s t  column of  Table IX.  

TABLE I X  

DEVIATIONS OF EXPERIMENTAL VAGUES 
FROM PREDICTIONS-LIQUID NITROGEN 

AT ( O R )  C $I Deviation $I, Deviation Excluding 
1 in. from Leading Edge 

3 13 1.78 +2L7 - 1.8 +7.07 - -7.9 
251 1.65 -9.5 - +14.1 -0. 25 - t7.8 
204 1.7 -19.5 - +18.4 +3.03 - '13.5 
100 2.4 -50 - +7 -3.82 - +7.0 
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The deviat ions of experimental values from pr6dict ions fo r  l i q u i d  hydro- 

gen a r e  shown i n  Table X. 

TABLE X 

DEVIATIONS OF EXPERIMENTAL VALUES 
FROM PRl3DICTIONS-LIQUID HYDROGEN 

AT ( O R )  C ’$ Deviation Excluding 
5/8 in. from Leading Edge 

$ Deviation 

400 

300 
200 

100 

- ~~ ~- - - 

2.3 -6.6 - +21.6 -6.6 - +3.22 

2.3 -3.68 - +22.6 -3.68 - +5.7 
1. 9 -8.7 - +18.9 -8.7 - +8.7 

1.9 -8.8 - +1O.4 -1.67 - +1O.4 

Here a l so  it can be observed t h a t  t h e  deviat ions a r e  g rea t e s t  near t h e  

leading edge and predic t ions  a r e  much b e t t e r  away from it. The analyses i s  

e s s e n t i a l l y  f o r  t h e  turbulent  region, and on t h i s  bas i s  it can be aaid t h a t  

t h e  experimental values a r e  within -8,7$ - +13.5% of t h e  predict ion.  

I n  these  predict ions,  t he  values of t h e  heat t r a n s f e r  enhancement co- 

e f f i c i e n t  C range from 1.7 t o  2.4, and f o r  t he  set of conditions f o r  which 

r e s u l t s  a r e  obtained, these  can be sa id  t o  be t h e  extreme l i m i t s  f o r  t h e  

value of  C. For l i q u i d  hydrogen, using any value within these l i m i t s ,  t h e  ex- 

perimental values would be within -38.7% t o  +27% of t h e  predict ions over the 

e n t i r e  height of t h e  heating surface covered i n  t h e  present s e r i e s  of  experi-  

ment s . 



4. EFFECT OF INTERFACIAL VAPORIZATION ON VELOCITY PROFILE AND FRICTION 
VELOCITY 

I n  t h e  model employed t o  pred ic t  t h e  heat t r a n s f e r  r a t e s ,  Chapter V, one 

of  t h e  s ign i f i can t  assumptions (v )  i s  t h a t  t h e  vaporization a t  t h e  in t e r f ace  

has no appreciable e f f e c t  on t h e  ve loc i ty  p r o f i l e  and shear velocity.  

Marxman and Gilber t  (45), Marxman (46), and Woolridge and Muzzy (47) have 

reported t h e  r e s u l t s  of t h e i r  experimental s tud ies  regarding t h e  e f f e c t  of 

vaporizatio_rl on f l a t  p l a t e s ,  on t h e  ve loc i ty  and shear s t r e s s  d i s t r i b u t i o n  

i n  turbulent  boundary layers.  Defining t h e  blowing parameter "B" a s  

2 ( p v)waU 

'eUeCf 
B =  

where p = densi ty  o f  t he  vapor a t  t h e  wal l  

v = blowing ve loc i ty  a t  t h e  p l a t e  

= dens i ty  i n  the  f r e e  stream 
'e 

u = veloc i ty  i n  t h e  f r e e  stream e 
2 

= f r i c t i o n  f a c t o r  = 2=/peue 
cf 

r = wal l  shear s t r e s s  
W 

t hey  show t h a t  t he  dimensionless ve loc i ty  @ = u/ue i s  given by 

where 11 = dimensionless dis tance y/F 

(6.7) 

6 = boundary layer  thickness.  



For t h e  case of B = 0, ind ica t ing  no blowing, t h i s  reduces t o  the  w e l l  known 

l/7 power law d is t r ibu t ion .  It was a l s o  shown (46) t h a t  the  f r i c t i o n  f ac to r  

can be expressed i n  t h e  form 

where g(Re ) i s  a funct ion of Reynolds number which gives  the  f r i c t i o n  f ac to r  

for B = 0. 

6 

To evaluate t h i s  use i s  made of  t h e  expression given by Schlichting 

(48) 

(6. i o )  -0.25 
6 

= 0.0225 Re 
cf 

Denoting the  f r i c t i o n  f ac to r  fo r  no blowing by C f o r  t h e  same f r e e  stream f o 9  

velocity,  t h e  f r i c t i o n  f ac to r  w i t h  blowing i s  then given by 

cf -0.23 l n ( 1  + B) - = 0.0225 Reg 
2 B 

’ --, 0.25 
\ 

0 i -0.25 l n ( 1  + B) 
= 0.0225 (:,; (Reso) B 

(6.11) 

The r a t i o  (6  /6) 

t o  blowing. 

25 ind ica tes  t h e  e f f ec t  of boundary layer  thickening due 
0 

Ignoring t h i s  e f f ec t ,  we obtain 



l n ( 1  + B) 
B 

- -  cf - 
cf 0 

(6.12) 

which i s  i d e n t i c a l  t o  t h e  expression obtained e a r l i e r  by Lees (49). 

We now assume, f o r  t h e  purpose of estimating t h e  e f f e c t  of  vaporization 

a t  t h e  in t e r f ace  on t h e  ve loc i ty  d i s t r i b u t i o n  and shear stress a t  t h e  i n t e r -  

face, t h a t  t h e  above expressions f o r  flow on a f l a t  p l a t e  a r e  va l id  f o r  f low 

between p a r a l l e l  p l a t e s ,  w i t h  f r e e  stream veloci ty  u 

maximum veloc i ty  u . To obtain a numerical value f o r  B w e  proceed a s  

fallows : 

being replaced by the  e 

max 

For a f l a t  p l a t e ,  

---fEhL 
1 2 
- p ' u  D 
2 u e  f 

B =  (6.13) 

where 

27 
'W 

Cf = 7 
eue 

For flow between p a r a l l e l  p l a t e s ,  u i n  Eq. (6.13) i s  replaced by u 
e max 

(6.14) 

But 
743: - u* 2 - -  
P 

U max + 
U* max 

and - - u  - 



Hence 

2 + 
( P d i  urnax 

Urnax 
B =  

It i s  now poss ib le  t o  estimate a numerical value f o r  B. 

a t  which vaporization i s  taking p lace  a t  t h e  in t e r f ace  and i s  given by 

q;/h With the  assumption (iv-Chapter V) t h a t  q' = q', 

( P V ) ~  i s  the  ra te  

fg' i 

Experimental values of q'/hkg f o r  l i q u i d  ni t rogen a t  AT = 3 1 5 O R  axe, 9: = 7000 

Btu/hr ft20F and h '  = 126.4 Btu/lbm s o  t h a t  q'/hh, = 55.3 l b / f t  hr. u 

and u 

10 and 80,000 f t /h r ,  respect ively,  for t h e  above conditions. 

2 + 
max f g 

a r e  found from t h e  so lu t ion  t o  Eqs. (5.28) and a r e  of t he  order of max 

Using these 

values, B = 0.52 For t h i s  value of B t h e  ve loc i ty  p r o f i l e  (b i s  compared 

w i t h  t h a t  f o r  B = 0 i n  Figure 38. It i s  seen t h a t  t h e  ve loc i ty  p r o f i l e  i s  

not s ign i f i can t ly  a f f ec t ed  by t h e  vaporizat ion a t  t he  liquid-vapor in te r face ,  

i n  t h e  present  experiments. The f r i c t i o n  ve loc i ty  u* i s  reduced i n  t h e  

r a t i o  Icflc,o = d l n  1.5/0.5 = 0.9 due t o  t he  e f f e c t  of vaporization. 

though or,e may argue t h a t  a reduct ion of l@ i n  the  f r i c t i o n  ve loc i ty  i s  not 

Al- 

i n s ign i f i can t ,  t h i s  decrease i n  f r i c t i o n  ve loc i ty  due t o  vaporization i s  ne- 

glected i n  t h e  present  ana lys i s .  
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Figure 38. Effect of i n t e r f a c i a l  vaporization on ve loc i ty  p ro f i l e  e 



5. EFFECT OF REDUCING GRAVITY 

Figures 25 and 26 show p l o t s  of heat f l u x  vs. height f o r  f i lm  boi l ing  i n  

N 

l i q u i d  ni t rogen and l i q u i d  hydrogen f o r  a/g = 1, a/g = 0.008 and subcooled 

l iquids .  A l s o  p l o t t e d  on these  f igures  a r e  pred ic t ions  from t h e  present  anal- 

yses f o r  a/g = 1 with a heat fltEx enhancement coe f f i c i en t  C = 1 . 8 ' f o r  l i q u i d  

nitrogen and C = 2.4 f o r  l i q u i d  hydrogen assumed constant f o r  a l l  heights x, 

Bromley's pred ic t ions  (6)  f o r  a/g = 0.008 and a/g = 0.016 f o r  l i q u i d  nitrogen 

and a/g = 0.008 f o r  l i q u i d  hydrogen. 

The a/g = 1 curves a r e  f o r  AT = 357"R f o r  l i q u i d  nitrogen and AT = 457"R 

for l i q u i d  hydrogen; values of C = 1.78 f o r  l i q u i d  ni t rogen a t  a AT = 3l5"R 

and C = 2.4 f o r  l i q u i d  hydrogen a t  AT = 400"R were used f o r  p red ic t ing  t h e  

heat t r a n s f e r  r a t e s  Figures 17 and 21 and on the  bas i s  t h a t  t h e  AT values of  

357"R and 453"R a r e  not very d i f f e r e n t  from 313"R and 400"R t h e  same values 

f o r  C were t r i e d .  It i s  seen 'chat experimental values a r e  wi th in  -2.4% - 

+12.7% of  t h e  predicted value. 

A s  can be expected, heat t r a n s f e r  r a t e s  a r e  reduced a t  lower grav i ty  

leve ls .  

height, ind ica t ing  t h e  p robab i l i t y  t h a t  t h e  onset of  i n t e r f a c i a l  o sc i l l a t ions  

or turbulence,  o r  both, have been delayed. Predict ions from laminar ana lys i s  

of Bromley (6 )  f o r  two values of a/g = 0.008 and 0.016 havgalso beenplottellin 

Figure 25. 

a t t a ined  i n  t h e  drop tower was 0.008. 

p l o t  obtained from laminar ana lys i s  (6)  for  a/g = 0.016 has a l so  been 

Even up to a height o f  3-l /2 in .  t h e  heat f l u x  i s  decreasing with 

From Appendix A, it can be seen t h a t  t h e  maximum value of  a/g 

However fo r  comparison purposes, q '  - x 
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included i n  Figure 25. Even these  pred ic t ions  with a/g = 0.016 a r e  observed 

t o  be s i g n i f i c a n t l y  lower than experimental values. The experimental values 

f o r  l i q u i d  ni t rogen a r e  uniformly 10% higher, but q u a l i t a t i v e l y  show t h e  

same behavior a s  predicted.  

i s t i c  of  laminar flow with a steady l iquid-vapor in te r face .  

showing the  p l o t  o f  c r i t i c a l  ve loc i ty  vs. height fo r  a/g = 0.008, it i s  noted 

t h a t  t h e  onset o f  i n t e r f a c i a l  waves i s  delayed by t h e  reduction o f  g rav i ty  to 

a height of  0.23 f t  (2.8 in .  ) a s  opposed to 0,014 f t  (O,l7 in .  ) a t  a / g  = 1. 

The heat f l u x  decreases with height, a character-  

I n  Figure 37, 

I 

This i s  cons is ten t  with experimental values of  heat f l ux  which decreases with 

height up to a height of  3.5 in. f o r  both l i q u i d  nitrogen and l i q u i d  hydrogen 

as  can be seen from Figures 25 and 26. This supports t h e  hypothesis t h a t  

heat t r a n s f e r  enhancement i s  caused by in t e r f ac i a lwaves .  The r e s u l t s  i n  

l i q u i d  hydrogen a re  s imi la r  t o  those i n  l i q u i d  ni t rogen i n  a l l  respects .  

Insofar  a s  can be in fe r r ed  from t h e  experimental values of heat f l u x  

under reduced gravi ty ,  it may be sa id  t h a t  t h e  q u a l i t a t i v e  var ia t ion  of  t h e  

heat f l u x  wi th  height i s  cons is ten t  with those pred ic ted  by laminar analysis  

up to a height of  3-1/2 in.  

was phys ica l ly  extended by t h e  use of t h e  drop tower. 

Hence the  region of  v a l i d i t y  of  laminar analysis  

6. EFFECT OF SUBCOOLING 

Figures 25 and 26 give experimental values o f  heat f l u x  vs. height f o r  

= 337"R a t  34 ps ig  giving a subcooling of l i q u i d  ni t rogen with a AT = T -T 

21.1"R; f o r  l i q u i d  hydrogen t h e  corresponding values a r e  AT = 449.3"R a t  32.5 

p s i g  giving a subcooling of  8 . 1 " R .  

w s  

I n  order t o  dekermine t h e  e f f e c t  of  



subcooling it i s  necessary t o  know t h e  e f f e c t s  of pressure a s  t h e  subcooled 

da ta  i s  ava i lab le  only a t  higher pressures  than those without subcooling. 

From L e w i s '  experimental r e s u l t s  on 1 in.  d i a  sphere i n  l i q u i d  ni t rogen (54), 

a t  AT = 357"R, p = 1 atm, q '  = 7000 Btu/hr ft and a t  p = 3 atmospheres (cor-  

2 
responding t o  29 psig) ,  q '  = 9000 Mu/hr ft . These a r e  indicated i n  Figure 

25 with horizontal  l i n e s  l abe l l ed  1 in.  dia sphere. On t h e  assumption t h a t  

t h e  e f f e c t  of increasing t h e  pressure i s  constant a l l  along t h e  height of a 

v e r t i c a l  surface,  and i s  of t h e  same order a s  t h a t  f o r  a sphere, it can be 

seen t h a t ,  f o r  t h e  same heating surface temperature and l i qu id  temperature, 

subcooling reduced t h e  value of' AT, defined a s  t h e  surface superheat above 

t h e  sa tu ra t ion  temperature; but even with a decrease i n  t h e  value of AT so 

defined, t h e r e  i s  a subs t an t i a l  increase i n  t h e  heat t r a n s f e r  r a t e s  through 

subcooling t h e  l i q u i d  v ia  pressurizat ion.  

2 

7. EFFECT OF HEIGHT ON HEAT TRANSFER COEFFICIENT 

Figures 39 and 40 show heat t r a n s f e r  coe f f i c i en t  h p lo t ted  aga ins t  height 

x f o r  l i qu id  nitrogen and l i qu id  hydrogen, respect ively,  f o r  4 values of AT 

each. It i s  in t e re s t ing  t o  observe from Figure 39 t h a t  f o r  x > 1 in . ,  h i s  

subs t an t i a l ly  constant within approximately - + 6% f o r  t he  range of AT between 

204"R and 3l5"R. 

va r i a t ion  i n  t h e  value of h. 

t h e  following conclusions can be drawn: 

For heights  l e s s  than 1 in. t he re  i s  considerably g rea t e r  

From Figure 39 f o r  AT = 315"R, 251"R, and 204"R 

(i) I n i t i a l l y  up t o  a height of about 1 in . ,  t h e  heat t r a n s f e r  coef f i -  

c i en t  r ap id ly  decreases with height. 
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- X (Inches) 

Figure 39. Effect  of height .on heat t r a n s f e r  coe f f i c i en t .  LN2. 
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(ii) For a l l  t h ree  l eve l s  of A,T, approximateiy the  same mininium value 

of h i s  reached. 

For a l l  three l eve l s  of AT, t h e  minimum value of h i s  reached ap- 

proximately a t  t h e  same height of  about 1 in. 

t h a t  t h e  minimum i s  reached a t  about 1 in . ,  f o r  AT = 3 l 7 O R .  

w a s  already pointed out i n  Section 2 t h a t  it may be said, from 

values of E /v, t h a t  turbulence e f f e c t s  begin t o  be s ign i f i can t  a t  H 

R e  = 100. From t h e  r e s u l t s  of t he  present  analysis ,  Re(x = 1 i n . )  

= 104 f o r  AT = 315"R. 

(iii) 

It i s  s ign i f i can t  

It 

( i v )  Above t h i s  height a t  which h reaches i t s  minimum value, h begins 

t o  increase gradually. 

(v)  A t  a given height x, t h e  value of h i s  higher f o r  lower AT. 

Trends s imi la r  t o  each G f  the  above were a l so  observed by Been  and 

Westwater (24) i n  experiments with horizontal  tubes i n  isopropanol, where t h e  

tube diameter was varied. Gn t h e  bas i s  of observations s imi la r  t o  (iii) above, 

they concluded t h a t  t h e  " c r i t i c a l  diameter" i s  independent of AT. 

be noted t h a t  for AT = 100°R, while t h e  general  behavior of t h e  h-x p l o t  i s  

s imi la r  t o  those of h a t  other AT values, h i s  cons is ten t ly  higher. The mini- 

It may a l s o  

mum value of h seems t o  occur a t  a grea te r  height x = 2 in. It should be 

noted t h a t  t h i s  AT = 10G"R i s  qu i t e  c lose  t o  AT (AT corresponding t o  mini- min 

mum heat flux-Reference 54) which i s  of t h e  order o f  45°-!300R f o r  l i qu id  ni-  

trogen. It i s  poss ib le  t h a t  t r a n s i t i o n  e f f e c t s  a r e  beginning t o  show a t  t h i s  

AT. 
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A s imi la r  h-x p l o t  f o r  l i q u i d  hydrogen i n  Figure 40 presents  

e s t ing  departures.  For every value of AT, h reaches a minimum a t  

varying from 3/8 in.  to 2 i n  depending on t h e  value of AT Here 

some i n t e r -  

a height 

t he  similar- 

i t y  with t h e  general  t r ends  observed wi th  l i q u i d  ni t rogen ends. The height 

a t  which h i s  reached progressively increases  from approximately 3/8 in.  min 

a t  AT = 400"R t o  about 2 in.  a t  AT = 100"R. h 

varying from a maximum of 42.5 Btu/hr f t  "F a t  AT = 400"R to a minimum of 

is d i f f e ren t  f o r  each AT, 
min 

2 

about 35.75 Btu/hr f t2"F  a t  AT = 100"R. 

creases  wi th  AT, i n  cont rad ic t ion  t o  t h e  t r end  observed i n  l i q u i d  nitrogen. 

A l s o  a t  heights x < 1.5 in  , h in-  

One fea ture  of t h e  va r i a t ion  of heat t r a n s f e r  coe f f i c i en t  wi th  height i s  

t h a t  near t h e  leading edge, f o r  AT = 315"R, 250°R, and 204"R i n  LN it actu- 

a l l y  increases  i n i t i a l l y .  This i s  contrary to t h e  t r end  predicted by laminar 

analysis .  

29 

8. EFFECT OF AT ON HEAT FLUX 

Figures 41 and 42 show p l o t s  of q ' v s  AT a t  d i f f e r e n t  he ights  f o r  l i q u i d  

ni t rogen and l i q u i d  hydrogen, respect ively.  These curves a l s o  show an i n i -  

t i a l  reduction of q '  wi th  x up to a height of  approximately 7 / 8  in .  and there-  

a f t e r  q '  begins t o  increase.  Data fo r  1 in.  sphere for l i q u i d  ni t rogen (54) 

and l i q u i d  hydrogen (64) a r e  a l s o  shown f o r  purposes of comparison. 

be observed t h a t  t hese  p l o t s  show t h a t  fo r  small  values of x t h e  reduct ion i n  

q '  wi th  AT i s  much smaller than for  l a r g e r  values of x and t h a t  they show a 

t r end  of higher q '  f o r  low values of x. Breen and Westwater (24)  a l s o  ob- 

served s imi la r  t rends  i n  t h e i r  experiments with hor izonta l  tubes. 

It may 

min 
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Figure 41. Effect of AT on heat flux, LN2. 



Figure 42. Effect of AT on heat flux. LII2* 
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9. Nu-Ra CORRELATION 

Figure 43 shows t h e  l o c a l  Nusselt number p l o t t e d  'against  Rayleigh number. 

These a r e  defined a s  

h x  
= Local Nusselt Number = - 

k 
X 

where h = l o c a l  heat t r a n s f e r  coe f f i c i en t  and 
X 

7 
I P b p )  C P '  I- h 

3 -%*+0.51 
I ' P  - 2 .  

2 k C A T  
Ra = x 

X 
I-1 

All t h e  da ta  f o r  both l i q u i d  ni t rogen and l i q u i d  hydrogen have been repre- 

sented i n  t h i s  plot .  

ture ,  t h e  ar i thmetic  mean of t h e  extreme temperatures of t h e  vapor film. 

From t h i s  p l o t ,  it can be seen t h a t  t h e  empir ical  co r re l a t ion  proposed by 

b d e r k i n g  and Clark (57 )  f o r  spheres 

A l l  t h e  p rope r t i e s  were evaluated a t  the  film tempera- 

Nu = 0.14 Ra 1/3 

pred ic t s  t he  heat t r a n s f e r  values reasonably wel l  with Nu and Ra computed on 

t h e  bas i s  of  x. The Nu for  l i q u i d  hydrogen a r e  genera l ly  higher than t h i s  

co r re l a t ion  p a r t i c u l a r l y  a t  low Ra. 

much be t t e r .  

X 

The p red ic t ion  f o r  l i q u i d  ni t rogen is  

10. EFFECT OF HEIGHT ON HEAT TRANSFER ENHANCEMENT COEFFICIENT 

Thus far, i n  t h e  so lu t ion  to Eqs. ( 5 -  28) a constant  value of t h e  heat 

From an examination of  Eq. (6.6) t r a n s f e r  enhancement coe f f i c i en t  C was used. 



x 



giving t h e  r e l a t i o n  between t h e  c r i t i c a l  wave number, ve loc i ty  of t h e  vapor, 

and f l u i d  propert ies ,  it may be expected t h a t  t h e  growth of t h e  i n t e r f a c i a l  

i n s t a b i l i t i e s  would a l s o  depend on these  parameters. 

f l u id ,  t h e  dimensionless amplitude of t h e  o s c i l l a t i o n s  may be expected to de- 

pend on t h e  ve loc i ty  o f  t h e  vapor and t h e  vapor f i lm  thickness;  these  vary 

wi th  height x, and a s  C i s  d i r e c t l y  r e l a t e d  t o  t h e  dimensionless amplitude 

one may expect t h i s  to vary with height. 

Therefore, f o r  a given 

To obtain a b e t t e r  understanding of t h e  va r i a t ion  of C wi th  height a s  it 

r e l a t e s  to f i lm  thickness  given by Eq. (5.5a) t h e  motion p ic tures  o f  f i l m  

bo i l ing  i n  l i q u i d  ni t rogen were analyzed. 

' )  

Figures 44 and 45 show representa t ive  p l o t s  of vapor film thickness- 

frame number taken from such photographs a s  a r e  reproduced i n  Figures 28134. 

As t h e  f i lming speed was constant ( ind ica ted  a s  frames/sec i n  t h e  p l o t ) ,  t h e  

frame numbers a l so  represent  time. 

thickness  with time a t  heights  of 0.146 i n . ,  0.39 in .  , and 0.78 in .  f rom t h e  

leading edge a t  a AT = LOOOR i n  l i q u i d  nitrogen. All t h e  data shown on t h i s  

p l o t  were obtained from a s ing le  f i l m  s t r i p .  Similar ly ,  Figure 4-51 shows t h e  

va r i a t ion  of vapor film thickness  a t  heights  of  4.02 in. , 4.4 in.  and 4.77 in.  

a t  AT = 315"R i n  l i q u i d  ni t rogen 

taken a t  d i f f e ren t  heights ( four  he ights )  and AT = 3151°R, 204OR, and 1OOOR- 

a t o t a l  of 12 films. 

aga ins t  height f o r  d i f f e ren t  AT, r ecas t  with da ta  obtained from plots such 

a s  Figures 44 and 45. 

maximum and minimum vapor f i l m  thicknesses a r e  funct ions of t i m e .  To 

Figure 44 shows va r i a t ion  of  f i lm  

Similar p l o t s  were made f o r  a l l  f i lms 

Figures 46, 47, and 48 a r e  p l o t s  of f i l m  thickness  

It may be observed from Figures 44 and 45 t h a t  t h e  
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represent  a l l  t h e  re levant  data  from p l o t s  such a s  Figures 44 and 45, Figures 

46-48 were constructed i n  t h e  following manner. 

sents t h e  "mean maximum vapor film thickness" a t  a given locat ion f o r  one 

Each darkened c i r c l e  repre- 

value of AT. 

range o f  var ia t ion  i n  t h e  maximum vapor f i lm  thickness.  

A v e r t i c a l  l i n e  i s  drawn through t h i s  point  t o  ind ica te  t h e  

Similarly,  each 

blank c i r c l e  represents  t h e  "mean minimum vapor f i l m  thickness," with a v e r t i -  

c a l  l i n e  through it t o  represent  t h e  range of  t h i s  ''minimum thickness ."  

A ca lcu la t ion  of C d i r e c t l y  from measured values of f i lm thickness  be- 

comes d i f f i c u l t  because of  t h e  following: 

(i) It can be observed from Figures 44 and 45 showing t h e  va r i a t ion  

of vapor f i l m  thickness  with time, t h a t  t h e  amplitude o f  o sc i l l a -  

t i o n s  i s  a function of time, and the  heat t r a n s f e r  enhancement 

coe f f i c i en t  C r e l a t e d  t o  t h e  dimensionless amplitude through 

Eq. (5.5a) i s  a l s o  a funct ion of time 

( is)  The value of C = l// (1-b2) 'where b i s  t h e  dimensionless ampli? 

tude-ratio of t h e  amplitude of o s c i l l a t i o n s  t o  the  mean vapor 

f i lm  thickness-is shown p l o t t e d  against  b i n  Figure 49. From 

Figures 46-48 showing the  m i n i m u m  and maximum vapor f i l m  th ick-  

ness a s  a function o f  t i m e ,  it i s  establ ished t h a t  t he  o s c i l l a -  

t i o n s  a r e  of  t h e  same order a s  t h e  vapor f i l m  thickness,  s o  t h a t  

b i s  c lose  t o  1. 

A t  such high values o f  b,from Figure 49, t h e  value of  C i s  seen t o  be 

very sens i t i ve  t o  changes i n  values o f  b. A measurement t o  t h e  degree of 

precis ion necessary i s  not possible,  a s  indicated i n  Appendix E "Error Analysis." ' 
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Figure 49. 
with dimensionless amplitude b. 

Variation of heat t r a n s f e r  enhancement coefyicient C 



(iii) It i s  a l s o  doubtful  i f  t h e  assumption of constant temperature 

p r o f i l e  i s  v a l i d  when t h e  vapor f i lm thickness  becomes very s m a l l .  

I n  such a s i t u a t i o n  it i s  l i k e l y  t h a t  due t o  t h e  high heat  t r ans -  

f e r  r a t e s  poss ib le  under such circumstances l o c a l  quenching may 

t ake  p lace  leading t o  l o c a l  suppression of surface superheat, 

which i n  t u r n  causes a reduct ion i n  t h e  heat t r a n s f e r  r a t e s .  

Keeping these  f a c t o r s  i n  mind, ins tead  of attempting t o  determine one 

value of C a t  a given locat ion,  t h r e e  poss ib le  values were determined a t  each 

loca t ion  f o r  AT = 315"R and 100"R-a maximum value obtained from t h e  upper 

l i m i t  of maximum vapor f i l m  thickness  and t h e  lower l i m i t  of minimum vapor 

f i l m  thickness ,  a mean value obtained from t h e  mean maximum and mean min imum 

values and a minimum value obtained from t h e  lower l i m i t  of t h e  maximum vapor 

f i l m  thickness  and t h e  upper l i m i t  of t h e  minimum vapor f i lm thickness.  The 

p l o t s  of such values of C as a funct ion of height f o r  AT=315"R and AT=100"R 

a r e  shown i n  Figures 50 and 51. 

We may now attempt t o  specify a funct ion giving t h e  va r i a t ion  of C w i th  

height o r  another parameter associated with height,  e i t h e r  d i r e c t l y  o r  i nd i -  

r ec t ly .  A s  has been ind ica ted  e a r l i e r  i n  t h i s  sect ion,  t h e  value of C may be 

expected t o  be dependent on t h e  vapor veloci ty ,  vapor and l i q u i d  densi ty ,  

vapor f i l m  thickness  and other  parameters such as surface tens ion  and gravity.  

The mechanism of such o s c i l l a t i o n s  i s  not completely understood and t h e  pre- 

c i s e  d e f i n i t i o n  of t h e  i n t e r f a c i a l  o s c i l l a t i o n s  i s  not poss ib le  a t  t h e  pres-  

ent  t i m e .  A s  a s implif icat ion,  it w i l l  be hy-pothesized t h a t  t he  l o c a l  

Reynolds number i s  an ind ica t ion  of  such osc i l l a t ions .  Figure 52 was con- 

s t ruc t ed  by r e p l o t t i n g  C from Figure 50, on a log-log sca l e  replacing x 

wi th  t h e  corresponding Reynolds number a t  t h a t  locat ion.  , The Reynolds number 

max 
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was obtained from computations of turbulent  film boi l ing  using constant value 

of  1.78 f o r  C. 

Two l i n e s  represented by 

0.307 c = 0.373Re (6.16) 

and 

(6.17) 0.373 c = 0 . 2 3 ~ e  

a r e  a l s o  shown on t h e  same p l o t  and these  can be sa id  t o  encompass t h e  values 

of  C for AT = 315"R. From Figure 50 it can be seen t h a t  t h e  minimum value 
max 

of  C i s  very c lose  t o  1.0, being l e s s  than 1.1 t o  a height of 5 in .  and there-  

a f t e r  increasing t o  1.15 a t  6 in.  

i m u m  value of C was set equal t o  1. 

Because of  these  very low values, t h e  min- 

Using Eqs. (6.16) and (6.17) each t o  

represent  C and C = 1 a s  C Eqs. (5.28) were solved and t h e  r e su l t i ng  max min' 

values of q'vs. x a r e  shown i n  Figure 53. I n  each case, i f  t h e  func t iona l  

representa t ion  of  C, Eqs. (6.16) and (6.17) gave a value C < 1.0, it was 

taken a s  C = 1, a s  C cannot admit a value of less than 1.0. Equation (6.16) 

p red ic t s  a s l i g h t l y  higher value for C a t  l o w  Re than Eq. (6.17) and t h e  e f -  

f e c t  of t h i s  i s  c l e a r l y  seen i n  pred ic t ions  c lose  t o  t h e  leading edge where 

Eq. (6.17) gives lower q' values. For higher values of Re, t h e  differences 

i n  C values given by these  two expressions gradual ly  decrease, which i s  re -  

f l ec t ed  i n  t h e  s i m i l a r i t y  of  q '  - x behavior. q '  - x p l o t  f o r  C = 1 i s  a l s o  

shown i n  Figure 3.. 



Figure 53. Effect of varying C with x. LN2. AT = 3S5"RO 



From these  curves, it can be seen t h a t  t h e  experimental values l i e  be- 

tween t h e  two extreme approximations i n  the  value of C, wi th  C = 1.0. min 

Recognizing t h a t  t he  a c t u a l  va r i a t ion  of C would probably l i e  between these 

two extremes, severa l  d i f f e r e n t  approximations were t r i e d  and t h e  one giving 

t h e  best f i t  f o r  experimental da ta  i s  shown p l o t t e d  i n  Figure 53 w i t h  C given 

by 

C 
0.161 0 . 6 9 ~ e  ( 6 .  is) 

This curve follows a l l  t h e  e s s e n t i a l  t rends observed i n  t h e  experimental data, 

t h e  decrease i n  heat f l u x  a t  low values of x, reaching a minimum a t  about 1 

in. from t h e  leading edge and then increasing w i t h  height. With t h i s  repre-  

sen ta t ion  of C, t h e  e f f e c t s  of i n t e r f a c i a l  o s c i l l a t i o n s  begin t o  show a t  

heights  of around 0.2 in. ( ind ica ted  by values of C obtained i n  t h e  so lu t ion  

of Eqs. (5.28)) and t h i s  i s  cons is ten t  w i t h  t h e  approximations i n  Figure 36 

which ind ica tes  t h a t  t h e  i n t e r f a c i a l  o s c i l l a t i o n s  begin t o  appear a t  around 

0.12 in.  from t h e  leading edge. 

on Figure 50 showing va r i a t ion  of C with x. 

Equation (6.18) i s  a l s o  shown p l o t t e d  

D. Summary, Conclusions and Recommendations 

1. SUMMARY 

The purpose of t h i s  study was t o  experimentally determine t h e  l o c a l  heat 

t r a n s f e r  r a t e s  i n  film boi l ing  on a v e r t i c a l  surface and p red ic t  such heat 
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t r a n s f e r  rates wi th  a s u i t a b l e  model. Vertical c y l i n d r i c a l  t e s t  surfaces 

were used t o  simulate v e r t i c a l  plane surfaces, and heat t r a n s f e r  rates were 

determined a t  11 locat ions up t o  a height of 6 in. f o r  four d i f f e r e n t  values 

of AT i n  two cryogenic f luids- l iquid ni t rogen and l i q u i d  hydrogen. Support- 

ing data  were obtained w i t h  motion pictures i n  order to understand the nature 

of t h e  vapor film. 

drop tower. 

The laminar vapor regime w a s  extended by t h e  use of the  

2. CGPJCLUSIONS 

From t h e  r e s u l t s  obtained over t h e  range of height, AT and l iqu ids  cov- 

ered, t he  following conclusion can be drawn: 

(i) Under normal conditions, a/g = I, laminar region w i t h  a smooth 

i n t e r f a c e  i s  confined t o  a very short  region near t h e  leading 

edge. 

I n i t i a l l y ,  heat t r a n s f e r  r a t e s  decrease wi th  height, reach a 

minimum and begin t o  increase gradually. 

I n t e r f a c i a l  o s c i l l a t i o n s  of la rge  amplitudes a r e  es tabl ished 

within a very short  dis tance from t h e  leading edge. 

Within a short  dis tance f r o m  the leading edge, heat t r a n s f e r  rates 

(ii) 

(iii) 

( i v )  

are enhanced due t o  t h e  e f f e c t s  o f  i n t e r f a c i a l  o s c i l l a t i o n s  and 

turbulence e f fec ts .  

The model adopted using a universal  veloci ty  p r o f i l e ,  p red ic t s  

t h e  heat t r a n s f e r  r a t e s  reasonably well. 

( v )  



( v i )  The empirical  co r re l a t ion  suggested by Frederking and Clark (57 )  

f o r  spheres p red ic t  heat t r a n s f e r  r a t e s  reasonably well .  

Even i n  t h e  laminar regime, t h e  heat t r a n s f e r  r a t e s  a r e  consider- 

ably higher than predicted by laminar ana lys i s  (6) .  

Minimum heat f l u x  increases  with a decrease i n  height. 

( v i i )  

( v i i i )  

3. RECOMMENDATIONS 

For fu r the r  work on t h i s  problem t h e  following suggestions a r e  made. 

(i) Extend t h e  scope of  experimental work t o  cover other l i q u i d s  and 

higher AT and x using a f l a t  v e r t i c a l  surface. 

Experimentally determine t h e  temperature and ve loc i ty  p r o f i l e s  

i n  t h e  vapor f i l m  and t h e  r e l a t i o n  between E 

Improve t h e  ana lys i s  by considering t h e - e f f e c t  of vaporization a t  

t h e  in te r face ,  both on t h e  ve loc i ty  p r o f i l e  and shear stress d i s -  

t r i b u t i o n  and t h e  r e l a t i o n  between E and E 

(ii) 

H' and E m 

(iii) 

€3' m 



APPENDIX A 

DROP PACKAGE 

Figure 54 shows d e t a i l s  of t he  drop package, This consisted of an inner  

cyl inder ,  ac t ing  as  a pis ton,  which moved i n  an outer  cyl inder ,  A metering 

pin,  appropriately shaped, was attached t o  the  bottom of the  inner  cyl inder  

and passed through an o r i f i c e  p l a t e  attached t o  t h e  bottom of the  outer  cyl in-  

der.  A tube with a conical  wooden piece a t  i t s  lower end, f ixed t o  the  outer 

cyl inder  acted as  a guide f o r  the  metering pin. 

The dewar i t s e l f  was suspended from the  cover p l a t e  of t he  inner cylinder.  

A tube screwed i n t o  t h e  cover p l a t e  acted as t h e  guide f o r  the  tube carrying 

the  t e s t  piece i n  the  dewar and had a l i f t i n g  p in  a t  t he  top, which could be 

held i n  a r e l ease  mechanism (Figure 55) .  

groove, i n  which b a l l s  i n  a cage reg is te red ,  

a s l i d ing  r ing,  which had a tapered pa r t  a s  shown. When the r i n g  was lowered, 

t he  b a l l s  moved out, re leas ing  the  drop package, The outer  sleeve was remotely 

control led by an air-cyl inder  p i s ton  arrangement. 

and 57) consisted of an enclosed chute extending from the  t h i r d  f l o o r  t o  the  

f i rs t  f l o o r  of the  laboratory,  giving a f r e e  drop dis tance of approximately 

32 f t .  and a f r e e  f a l l  drop time of approximately 1.34 sec, After t h e  drop 

the  package was hoisted by an a i r  winch placed on the  t h i r d  f loo r .  The pack- 

age was brought t o  r e s t  by a sand box a t  t he  bottom; the  conical  wooden piece 

a t  the  end of the  tube on the outer cyl inder  of the  drop package penetrated 

The l i f t i n g  p in  had a c i r c u l a r  

They were retained i n  place by 

The drop tower (Figures 56 

14 2 



Figure 54. Drop package. 
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Figure 55. Release mechanism. 
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the  sand approximately 17 in .  under f r e e  f a l l  conditions before the  package 

was brought t o  r e s t .  

A s  l i q u i d  hydrogen was used i n  the  drop tower the  following safe ty  pre- 

cautions were taken. 

(i) An explosion proof v e n t i l a t i n g  fan  giving two a i r  changes per  

minute t o  remove hydrogen vapor, was continuously running. 

A gas analyzer sampled the  a i r  sequent ia l ly  from four  s t a t i o n s  i n  

the  drop tower and sounded an alarm whenever the  hydrogen concen- 

t r a t i o n  i n  the  area where a sampling s t a t i o n  was located exceeded 

a prese t  l i m i t .  

( i t )  

(iii) Provision of nonsparking lead sheathed f l o o r s ,  grounding of a l l  

equipment, nonsparking beryllium tools  and grounding l e g  s t r a p s  

f o r  personnel i n  the  area t o  prevent sparking due t o  discharge 

of s t a t i c  charges. 

Provision f o r  flooding the  drop tower with C O  i n  case of rupture 

of c ryos ta t  containing l i q u i d  hydrogen, or small f i r e s ,  

( i v )  2 

Before releasing the  package the inner vessel  was f u l l y  extended and held 

i n  t h a t  pos i t ion  by the  re lease  mechanism. 

l i t t l e  clearance between the metering p in  and the o r i f i c e  p la te .  When the  

outer cylinder,  a f t e r  re lease,  h i t  the  sand and came t o  r e s t ,  t h e  inner cylin- 

der continued i t s  motion, the a i r  trapped i n  the outer cylinder b u i l t  up pres- 

sure till the  clearance between the o r i f i c e  p l a t e  and the  metering p in  

increased venting the a i r  until the inner  vessel  was within a few inches of 

coming t o  r e s t ,  The clearance between the metering pin and the o r i f i c e  p l a t e  

I n  t h i s  pos i t ion  there  was very 
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decreased a t  t h i s  point allowing the  trapped a i r  i n  the  outer cyl inder  t o  pro- 

vide a cushion for the  inner  vessel  carrying the dewar and t e s t  surface till 

it came t o  a complete r e s t .  

The decelerat ion was measured by a p iezoe lec t r ic  c r y s t a l  mounted on the 

t o p  of the  t e s t  package. 

amplifier and then measured i n  an oscil loscope. 

on the t e s t  package monitored the a i r  pressure i n  the  outer cylinder,  A 

t y p i c a l  oscil loscope t r a c e  i s  reproduced i n  Figure 58, 

t i o n  was approximately 25 g and the  maximum a i r  pressure 17 psig. 

The s igna l  from the  c r y s t a l  was fed t o  a charge 

A pressure transducer mounted 

The maximum decelera- 

The accelerat ion of the inner cylinder carrying the dewar and test  sur- 

The face  was measured during f r e e  f a l l  by a Kister  model 303 accelerometer. 

output was recorded on t h e  Sanborn Recorder. The accelerometer was ca l ibra ted  

before use by a device which gave var iable  accelerat ion from a/g = 1 t o  

a/g = -1. The a/g under f r e e  f a l l  conditions i s  given i n  Figure 59. 

t h i s  p lo t  it i s  seen t h a t  the  body force increased as  t h e  package f e l l ,  due t o  

increasing a i r  drag, This increase reached a maximum value of approximately 

0.008, 

From 

The lapsed time i n  f r e e  f a l l  was approximately 1,345 sec. 



2 
5 psi 

Figure 58. Drop package deceleration--fnner cylinder; oseflloscope t r ace .  

o o o o o o  

Ffgwe 59. Drop package accelerat ion-free fa l l .  



APPENDIX B 

EFFECT OF INSULATION 

Local heat f l u x  measurements were made by recording the temperature of a 

t e s t  sect ion as a funct ion of t$me and equating the  time r a t e  of change of 

enthalpy of the  t e s t  sect ion t o  the  heat t r a n s f e r  from the section. For t h i s  

method t o  be 'valid, the t e s t  sect ion must be thermally insulated from the  

adjoining spacer pieces. Attempts were made t o  introduce an a i r  gap (of around 

0.005 i n , )  between the  t e s t  sect ion and adjoining pieces but t h i s  was notprac-  

t i c a b l e  mainly because of d i f f i c u l t y  i n  properly al igning the  several  pieces 

i n  the t e s t  piece. 

Sa t i s fac tory  r e s u l t s  were obtained by using Teflon washers between the 

d i f f e r e n t  sect ions,  To minimize t h e  area of heat leakage from the t e s t  sec- 

t i o n  t o  the adjoining sect ions due t o  the temperature d i f f e r e n t i a l  i n  the  

various sect ions during the cool down period, a recess  was cut  i n  the  spacer 

pieces so  t h a t  only a c i r c u l a r  sect ion of 1/16 i n ,  rad ia l  thickness waspressed 

against  the  adjoining section, separated by a Teflon washer. I n  order t o  study 

the  e f fec ts  of introducing an insu la t ing  material ,  t e s t  piece 1 was constructed 

using d i f f e r e n t  thicknesses of Teflon insu la t ion  washers (0.005 in , ,  0.010 

in., O,Ol5 i n , ,  and 0.060 i n , )  i n  sequence and comparing the  r e s u l t i n g  heat 

f l u x  data  observed, A p l o t  of the  heat f l u x  da ta  from the d i f f e r e n t  sect ions 

f o r  d i f fe ren t  thicknesses of the i n s u l a t i n g  mater ia l  i s  given i n  Figure 60, 

From t h i s  p lo t  i t  i s  observed t h a t  heat f l u x  values a re  constant, within 

the  l i m i t s  of experimental s c a t t e r  f o r  various thicknesses of Teflon from 

15 0 
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0.005 in .  t o  O,Ol5 i n .  but  there  i s  a considerable increase i n  measured heat 

f lux  when the  thickness i s  increased to 0.060 i n ,  It i s  believed t h a t  t h i s  

increase i s  due t o  increased heat t r a n s f e r  t o  the  l i q u i d  v i a  the l a r g e r  thick- 

nesses of Teflon. The surface temperature of the  Teflon i s  depressed but 

because of t h e  lower diffusi 'vity of Teflon, there  i s  no enthalpy flow t o  sus- 

t a i n  the temperature a t  a high value, and hence nucleate boi l ing i s  quickly 

established with a subsequent considerable increase i n  the heat t r a n s f e r  r a t e .  

The 1/4 i n ,  copper sect ion i s  now placed between two Teflon pieces whose sur- 

face temperature i s  much lower than t h a t  of the  sect ion i t s e l f .  Hence, i n  

addition t o  t h e  heat t r a n s f e r  d i r e c t l y  t o  the adjacent f l u i d ,  there  i s  a sec- 

ondary heat t r a n s f e r  path through the Teflon pieces,  

i n  the heat t r a n s f e r  r a t e  from t h e  section. But w i t h  lower thicknesses, the  

Teflon i s  blanketed by a 'vapor f i l m  and there  i s  no d i r e c t  l i q u i d  surface con- 

t a c t .  It was concluded t h a t  0.005 in.  t h i c k  Teflon would provide a s a t i s f a c t o r y  

insu la t ion  and was used i n  the t e s t  surfaces,  

This leads t o  an increase 



APPENDIX C 

EFFECT OF CONTAINER SIZE 

The avai lable  g lass  dewar had an ins ide  diameter of 10 em (4 To 

f i n d  the  maximum diameter of the  t e s t  piece t h a t  could be used i n  t h i s  con- 

t a i n e r  without the  walls of the  container a f f e c t i n g  the  r e s u l t s ,  heat f l u x  

'values were obtained with a 1 i n ,  diameter t e s t  piece,  f i r s t  i n  a 6 in .  diam- 

e t e r  container, then with tubes of 2-1/2 in , ,  2 i n , ,  and 1-1/2 i n ,  diameter 

tubes placed i n  the  6 in .  diameter dewar, The heat f l u x  data  obtained with 

t h i s  t e s t  piece a t  th ree  d i f f e r e n t  locations-5/8 i n , ,  3 in . ,  and 5-5/8 in .  

from the  leading edge a t  a mean temperature of 455"R-are p lo t ted  i n  Figure 

61, 

vapor generation r a t e  was highest ,  From the p l o t  it can be observed t h a t  a 

rad ia l  clearance of 1/2 i n .  i s  adequate t o  reduce the  e f f e c t s  of the  con- 

t a i n e r  walls t o  acceptable l i m i t s ,  Hence, t e s t  pieces  were made of 1 i n ,  

This was the  highest  temperature of the surface used and consequently 

and 2-1/4 i n .  diameter c y l i n d r i c a l  pieces,  giving a minimum radia l  clearance 

of 3/4 i n ,  between the t e s t  surface and container walls,, 
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APPENDIX D 

JUSTIFICATION FOR LUMPED ANALYSIS 

I n  the  experiments, the  hea.t f l u x  t o  the  surrounding l i qu id  from t h e  tes t  

surface was calculated by measuring the r a t e  enthalpy change of t he  t e s t  sec- 

t ion.  The r a t e  enthalpy change of t he  t e s t  sec t ion  was determined through a 

time-temperature char t  obtained from one thermocouple i n s t a l l e d  i n  the  t e s t  

section. The 'va l id i ty  of t h i s  procedure i s  dependent on the  assumption tha t  

the  time r a t e  of change of temperature a t  every point  i n  the  t e s t  sec t ion  i s  

t h e  same. 

To tes t  t h e  v a l i d i t y  of t h i s  assumption consider a semi- inf ini te  s l ab  of 

thickness 2d (Figure 62) ,  suddenly immersed i n  a cryogenic f l u i d  a t  i t s  satu- 

r a t i o n  temperature T 

s tan t .  

i s  subs t an t i a l ly  constant f o r  d i f f e r e n t  values of AT. The i n i t i a l  uniform 

temperature of t h e  block i s  T 

w i t h  a heat t r a n s f e r  coe f f i c i en t  h assumed t o  be con- 
S 

From Figure 39 showing var ia t ion  of h w i t h  AT, it can be seen t h a t  h 

and i s  high enough t o  induce f i l m  boi l ing.  
0 

The appl icable  equation i s  

- 
a at &2 

w i t h  

t = O  T = T  
0 

x = d  k $ + h ( T - T )  w s  = 0 

155 
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Figure 62. Model f o r  lumped analysis. 



Subs t i tu t ing  8 = T - T and using the  appropriate transformed boundary con- 
S 

di t ions ,  t h e  so lu t ion  t o  t h i s  i s  

n n 1 

The eigenvalues h a re  given by n 

= B i o t  Modulus 
hd A. d t an  h d = - n n k 

and the  coefficientsA by 
n 

2 80 s i n  A d n A. = 
n A d + s i n  h d cos h d n n n 

The exact heat  f l u g  i s  then given by 

‘12 = - k q  x=d 

.The experimental procedure can be simulated by f ind ing  the  time r a t e  of change 

. of temperature a t  a gi,ven locat ion,  say X = X from Eq. (D03) and assuming 
0’ 

t h i s  t o  be ‘valid a t  every X, t he  time r a t e  of change of enthalpy can be found. 

Thus the  heat  f l u x  obtained by t h i s  simulated experiment i s  given by 

If qdx and q’  agree well ,  lumped ana lys i s  can be said t o  be ‘valid,  A 

Twel’ve eigenvalues were determined (us ing  a computer) for t y p i c a l  ,values 

of h and d = 3/8 i n ,  f o r  l i q u i d  hydrogen and l i q u i d  nitrogen. 

e r r o r  due to the  use of lumped ana lys i s  i s  then given by 

The percent 



The maximum error in assuming the temperature at X = 0 to be the surface tem- 

perature fs then given by 0 ( X  = 0) - e(X = d) . Representative ,values of per- 

cent error in heat f l u  calculations and determination of surface temperature 

due to the use of lumped analysis are given in Table I X .  

TABLE X I  

ERROR I N  HEAT FLUX CALCULATI3NS 
AID SURFACE TEMPERATURE DETERMIIVATION 

DUE TO LUMPED ANALYSIS 

% Error  i n  0 ( X  = 0 )  - hD B i  = - 
k Liqufd  AT( OR) h, 

Btu/hr ft2 "R q' Eq. ( D . 8 )  e ( X  = d) 

291 2.5.0 0 * 003397 0.057 0.50 

195 22.5 0.003057 0.051 G.3G 

LN2 

m2 

97 27.0 OeOO3375 0.057 0~16 

LH2 377 37.5 3.005095 0.086 0.96 

LH2 282 40.0 0.005435 0,092 0~76 

LN2 

m2 189 35.0 0.004557 0 * 077 0.43 

LH, 88 37.0 0.00312? 0.058 0.14 



APPENDIX E 

ERROR ANALYSIS 

I n  the  experiments poss ib le  e r ro r s  a r e  associated with the  determination 

of heat f l u x  from the  t e s t  surface,  the  t e s t  surface temperature, height along 

the  t e s t  surface a t  which the  t e s t  sect ions were located and the  measurement 

of vapor f i l m  thickness from motion p ic tures .  

1. Heat Flux 

The u n c e r t a i n t i t i e s  i n  heat flux determination a r i s e  from ( a )  the  uncer- 

t a i n t y  associated wi th  i t s  determination Prom the r e l a t i o n  

and ( b )  t h e  heat l o s s  f r o m t h e  test  section. 

( a )  The uncer ta in t ies  associated w i t h  t h e  computation of t h e  heat f l ux  

w i l l  be estimated following the  procedure proposed by Kline and McClintock 

(62). According t o  t h i s  procedure, t h e  uncertainty i s  given by 

where Ay i s  the  uncertainty associated w i t h  computing y = y(xl, x2)...x ) and 

Ax1, Ax2, e . .  Ax 

t h i s  t o  the  determination of heat  f l u x  q', Eq. ( E e l ) )  

n 

a r e  the  uncer ta in t ies  associated wi th  each of the  xi" Applying n 

3-59 
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The mass of the t e s t  sect ion was determined i n  a chemical balance ha,ving 

an accuracy of - + O.OOO5 gm, 

f i n a l  assembly made any s igni f icant  difference i n  t h e  mass determined, one of 

the  t e s t  surfaces was dismantled and the mass of the t e s t  sect ions before and 

a f t e r  such pol ishing compared, It was found t h a t  they were wfthin -0.01 gme 

Using t h i s  ,value Am/m i s  estimated t o  be within 0.01/28 = 0.00065. 

To f ind  i f  the  pol ishing of the t e s t  s u r f a c e a f t e r  

The area was computed by measuring the thickness and the  diameter of the  

t e s t  surface sect ions with a ,vernier ca l ipers  measuring within - + 0,0005 i n .  

The uncertainty i n  computing the area i s  given by 

where t = thickness of sect ion and d = diameter of section, For t h e  t e s t  sur- 

faces used, t = 0.25 in ,  and d = 1,O in,  and 2.25 i n ,  

The uncertainty associated with t h e  'value of C a r i s e s  from two sources 

(i) the  uncertainty i n  reading the  'values of C from Ref. 58 which were used 

i n  computing these values, and ( T i )  the  unyertainty i n  the data  of Ref, 58 as 

applied t o  the  mater ia l  used f o r  the present experiments, which i s  0,01, and ' 

i s  considered i n  grea te r  d e t a i l  under Section 5,  "Specific Heat of Copper," 

The uncertainty i n  reading the 'values from Ref. 58 i s  estimated t o  be 

P 

P 

0,002/0,2 = 0,01* 

The time r a t e  of temperature was measured on the  recorder char t ,  and i n  

f i l m  bo i l ing  the t r a c e  of thermocouple output-time has a 'very small curvature, 
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and t h e  s lope can be measured with reasonable accuracy. The uncertainty i n  

t h e  slope i s  estimated t o  be 

t h e  uncertainty i n  computing 

( b )  Heat loss from t h e  

thermocouple wires, and (ii) 

0.02/2 = 0.01. Combining a l l  these,  we obtain 

2 2 
q' t o  be Aq'/qe = [0.00065 + 0.002 + 0.02;? + 

t es t  surface sec t ion  a r i s e  from (i) loss  through 

leakage t o  adjacent sect ions through t h e  Teflon 

insu la t ing  washer. 

(i) To compute heat loss through thermocouple wires assume thermocouple 

junction t o  be a t  the  tes t  surface temperature and the  other end coming out of 

t he  gland a t  the  top  of the  t e s t  surface t o  be a t  t he  l i qu id  sa tura t ion  tem- 

perature.  

wire. 

AT = 40C"R i n  LH2. 

used f o r  t he  thermocouples. 

Btu/hr f t  

For computing heat loss the  constantan wire i s  replaced by a copper 

The minimum length of wire from the  t e s t  surface t o  the  gland was 4 in.; 

Thi r ty  gauge wires having a diameter of 0.G10 in.  were m a x  

Assuming an average thermal conductivity of 300 

"R ( 5 8 )  we get  

AT 
'wire = 2KATx 

400 
144 4/12 

x- 0.7 85 4x10- 
= 2 x 300 x 

= 9.8 x Btu/hr 

On the  bas i s  of t he  heat t r ans fe r  a rea  from a 1 i n ,  diameter t e s t  surface sec- 

t i o n  t h i s  corresponds t o  

2 = 2 Btu/hr f t  
- 9.8 x - 

0.5 x lom2 %ires 
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which i s  negl ig ib ly  small compared even with the  lowest f l u x  measured-2900 

2 
Btu/hr f t  

(ii) Heat l o s s  t o  adjacent sections:  it may be expected t h a t  t he  heat 

l o s s  from a given t e s t  surface sec t ion  t o  an adjacent sec t ion  i s  compensated 

by t h e  heat gain from the  other  adjacent sec t ion  and the  ne t  loss or  gain 

i s  negl ibible .  

e r r o r  due t o  t h i s  heat l o s s  (or gain),  consider one adjacent sect ion t o  be a t  

a lower temperature than the  t e s t  sec t ion  with 0,005 in .  Teflon in su la t ing  

washer separat ing the  two sect ions each having per fec t  thermal contact with 

t h e  Teflon washer. The temperature d i f f e r e n t i a l  over t he  d i f f e ren t  pieces  of 

the  t e s t  surfaces  was a maximum of l.5"R between the  bottom piece and the  top  

piece,  There were a t o t a l o f  f i v e  pieces  between them and hence a temperature 

d i f f e r e n t i a l  of 0.5"R between two adjacent pieces  may be assumed. 

of heat t r ans fe r ,  because of t he  recess  i n  the  sect ion,  was l imited t o  a r a d i a l  

thickness  of  1/16 in. 

values, f o r  1 in.  diameter t es t  surface 

However, t o  obtain an estimate of  t he  maximum possible  

The area 

For Teflon K = G. 1 Btu/hr "R f t  ( 5 8 ) .  With  these  

0.5 
0.005/12 X 

II x 1 x 1/16 = m -  = 
144 0.1 x 

'ins AX 

= 0.1875 Btu/hr 

Based on the  area of heat t r ans fe r  of the t e s t  sec t ion  t h i s  i s  equivalent t o  

37.5 Btu/hr f t  and i s  l a3% of the  lowest computed value. 2 

Combining a l l  the  sources of uncer ta in t ies  it i s  estimated t h a t  t he  uncer- 

t a i n t y  i n  the  computed heat f l u x  'values a re  within - + 2.7$,, 



2, Temperature 

The temperature of the surface was determined from the thermocouple in 

the sections of the test surface. The errors in its determination are due to 

(i) errors in measuring the output, and (ii) error due to assumption of lumped 

analysis. 

(i) The error in reading the output is due to nonlinearity in the 

recorder output and the error in the potentiometer which was used to cali- 

brate the recorder. 

range of values used in the experiments. 

output is specified at - + 0,25 div. corresponding to - + 0.5 vv at a sensitivity 

of 2 pv/div. Therefore, the maximum error in reading the output is estimated 

at 2 1.8 pv corresponding to 

The potentiometer had an accuracy of - + l,3 pv in the 

The nonlinearity in the recorder 

at 136.5OR-the lowest surface temperature at which data were obtained. 

(ii) Error due to assumption of lumped analysis is estimated at 0 ,5"R  

at AT = 3OO"R for LN and 1 " R  for LH 
2 2 

at AT = 4 0 0 " R  ( see Appendix D) e Hence, 

the uncertainty in the determination of surface superheat is + O,5OR in 3 l 7 " R  - 

2. 
or 0,2$ for LN and - + 1.2"R in 400"R or 0.3% in LH 

2 



3 .  Uncertainty i n  t h e  Measurement of t h e  Distance 
of Test  Sections from the  Leading Edge 

The sources of uncer ta in t ies  a r i s e  f romtwo fac to r s  (i) t h e  f i n i t e  

height of t he  t e s t  sec t ion  leads t o  uncertainty i n  the  prec ise  loca t ion  a t  

which the  heat f l u x  was determined. The height of t he  t e s t  sec t ion  was 0.25 

i n .  and t h e  heat f l u x  was assumed t o  have been meas~i~ed  a t  t he  midheight of 

t he  t e s t  sect ion,  being the  average over t he  height of O,25 i n .  It may be 

assumed t h a t  t he  heat f l u x  computed represents  t he  heat f lux  a t  some point  i n  

the  middle t h i r d  of the  t e s t  sec t ion  leading t o  an estimated uncertainty of 

+ 0,041 in .  i n  the  loca t ion  a t  which the  heat f l u x  was measured. 

( i t )  Because of t he  introduct ion of t h e  s t a i n l e s s  s t e e l  end pieces  a t  

t h e  bottom, boi l ing  i s  induced i n  the  end piece through heat t r a n s f e r  by con- 

duction from the  t e s t  piece, thus  s h i f t i n g  the  leading edge from the  bottom 

of the  t e s t  surface.  To estimate t h i s  s h i f t  i n  t he  leading edge, t h e  end 

piece was t r ea t ed  a s  a f i n  with a constant heat t r a n s f e r  coe f f i c i en t  corre-  

sponding t o  t he  lowest measured i n  the  experiments (which would give the  

g rea t e s t  s h i f t ) ,  The base of the  f i n  was assumed t o  be a t  t h e  maximum sur- 

face temperature and bo i l ing  was assumed t o  have ceased a t  a point  i n  the  f i n  

which had the  temperature corresponding t o  q' 

temperature drop took place was computed a s  the  s h i f t  i n  t he  leading edge. 

The dis tance over which t h i s  mine 

min For l i qu id  nitrogen T 

temperature and h=2C Btu/hr f t P o R  (54) j 

hydrogen were AT =20"R and h=30Btu/hr 

a t  which q '  
min 

min 

was assumed, was 40"R above sa tura t ion  

the  corresponding values f o r  l i q u i d  

f t  "~(64) obtained i n  experiments w i t h  
2 



1 i n ,  sphere. With these  values, it i s  estimated t h a t  the  s h i f t  i n  leading 

edge i s  0.037 in. f o r  l i q u i d  ni t rogen and 0.068 in. f o r  l i q u i d  hydrogen. 

Combining the  two, t he  uncertainty i n  the  measurement of t he  loca t ion  of 

the  t e s t  sec t ion  i s  within + 0.110 in., - 0.026 in. 

4, Uncertaint ies  i n  t h e  Measurement of Vapor 
Film Thickness by Photographic Methods 

The motion p i c tu re s  were projected on a ground g la s s  sheet t o  give a 

magnification of 10 times the  o r ig ina l  s ize ,  the  dis tances  were measured by 

the  use of a 0,040 in .  diameter reference wire which establ ished the  sca le  

of the  image. 

having an accuracy of - + 0.0005 in.  

measurement of the  reference wire diameter on the  image was within - + 0,010 in .  

and the  uncertainty i n  the  measurement of the  'vapor f i l m  thickness  as  

- + [0,010 x 5/10] or 2 0.005 in. 

The dis tances  on the  image were measured wi th  a ,vernier c a l i p e r s  

It i s  estimated t h a t  t he  e r r o r  i n  the  

5. Speci f ic  Heat of Copper 

To evaluate the  r a t e  of enthalpy change of the  t e s t  surface t o  compute 

the  heat f l u x  'values, values f o r  spec i f i c  heat  capaci ty  of copper were taken 

from Ref. 58, Discrete  values used from t h i s  a r e  given i n  Table X I I .  
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TABLE XI1 

SPECIFIC HEAT OF OFHC COPPER 
(Ref, 58) 

c ** 
P 

Temperature 

O K  O R  
"R J/gm"K* I~"R B t u  

70 126 173 0413 

80 144 .205 ,04896 

go 162 .232 .0554 

100 180 .254 e 0607 

120 216 288 0688 

l b 0  252 0 313 .0748 

160 288 e 332 e 0793 

180 324 .346 0826 

200 360 ,356 .0850 

220 396 .364 .0869 

2 40 432 .371 .0886 

260 468 .376 .0898 

280 504 .381 .og10 

540 .386 .0922 
~ 

1 300 

*Joule/gm "K = 0.23885 Btu/lb "Re 

**C 'values a t  intermediate temperatures were found by in te rpola t ion .  
P 

To evaluate  the  r e l i a b i l i t y  of the  values of spec i f i c  heats used i n  the  

computation of r a t e  of enthalpy change, these  values were compared with those 

of Dockerty (63), Martin (59)> and Farukawa, 

these sources and from Ref. 58 (which i s  i t s e l f  based on Ref, 60) a r e  given i n  

Table XIII, which a l s o  gives  values of spec i f i c  heats  of commerically pure 

copper and fram a comparison of t hese  values, it can be seen t h a t  t h e  maxi- 

mum var ia t ior ,  i n  t h e  values of spec i f i c  heat given by d i f f e r e n t  workers 

i s  within 1% below 1 2 0 ° K  and less than 0.5% between 120" and 300°K. 

-- e t  a l .  (63). The values from 

It may 



TABLE XI11 

SPECIFIC HEAT OF COPPER-COMPARISON OF DATA FROM DIFFERENT SOURCES 

C (Btu/lbm OR) 
P 

"K OR Ref. 59 Ref ~ 60 Ref e 61 Ref e 63 Refa 60* 

Temperature 

2 x 10 x 10 x 10 x 10 x 18 

70 

80 

90 

100 

120 

140 

160 

180 

200 

220 

2 40 

260 

280 

300 

126 

144 

162 

180 

216 

252 

288 

324 

360 

396 

432 

468 

504 

5 40 

4.13 

4,896 

5.54 

6.07 

6.88 

7.48 

7.93 

8-26 

8.50 

8.69 

8.86 

8.98 

9.10 

9.22 

4 , l O  

4.86 

5.51 

6.32 

6.87 

7.47 

7.91 

8.25 

8.49 

8.69 

8,84 

8.99 

9.11 

9.21 

4.07 

4.84 

5.49 

6.02 

6.85 

7.47 

7.91 

8.24 

8.49 

8.69 

8.85 

8.99 

9.11 

9 ., 196 

4.09 

4.83 

5.48 

6,02 

6.86 

7.47 

7.92 

8.25 

8.51 

8.71 

8.88 

9.01 

9 , l l  

9 e 199 

4.08 

4.84 

5.48 

5.995 

6.84 

7.47 

7.91 

8.25 

8.496 

8,71 

8.88 

9.00 

9.12 

9.21 

+Commercially pure copper. 

All other 99.9% pure coppere 



168 

a lso  be seen t h a t  t h e  spec i f ic  heat i s  r e l a t i v e l y  insens i t ive  t o  small amounts 

of impurit ies i n  copper a s  observed from values given i n  t h e  l a s t  column 

Table XI11 f o r  commerically pure copper. 

heavily cold worked copper has a spec i f ic  heat of  about Oeu$ higher than t h a t  

o f  annealed copper. From these values it may be concluded t h a t  t h e  maximum 

uncertainty i n  t h e  value of specif ic  heat for  t h e  machined OFHC copper used 

i n  the  experiments i s  within - + 0.6%. 

of 

Martin (59) a l so  concludes t h a t  
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PROPERTIES OF NITROGEN AND HYDROGEN 
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APPENDIX G 

DATA 

Data were reduced following the  procedure out l ined  under Chapter IV ,  Sec- 

t i o n  E, "Data Reduction." No datum w a s  discarded. During a run the  pressure 

5ncreased by up t o  0.25 p s i  due t o  vapor generation, 



P = 0-7 psig: Saturated Liquid: a/g = 1 

Test T,-Tsat 4'4 h, 
Hefght Above 

in.  

Run D i a ,  
No. in.  Leading Edge, Liquid O R  Btu/hr ft2 Btu/hr ft2 O R  

2001 

2002 

2003 

2004 

2005 

2006 

2007 

2008 

2009 

2010 

2011 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

314- 9 
314*9 
314.9 

314.9 
31409 
31409 

314.9 
3140 9 
314 0 9 

31409 
3x409 

314 9 
314.9 
314.9 

250.8 
2.50.8 

230~8 
250.8 
250 e 8 

250-8 
250~8 
250.8 

250~8 
250 8 
250-8 

250.8 
250-8 
250.8 

314 9 

250,~ 8 

204 e 0 
204,O 

7378.5 
6624 e 8 
6880 7 

7378-5 
6535 6 
6880~7 

737805 
6506 * 5 
6815.9 

7530 7 
6506-5 
6880~7 

6565. o 
6880.7 

6969 e 3 
5303 * 3 
5639 6 

6969 3 
5303e3 
5588.6 

6969 a 3 
5258s 
5538-5 

6969 * 3 

5588 I 6 

6892 e 6 
5258,o 
5538e5 

6925 e 6 

7304 8 

53'3-3 

4297,2 
204 0 4526 e 6 

23.43 

21 85 

23-43 
200 75 
21.85 

23.43 
20~66 

21,04 

2L64 

23 91 
20.66 
21-85 

23.2 
20.8 
21 a 85 

27.8 
21* 15 
22.49 

27-8 
21 15 
22-8 

27.8 
20.96 
22,08 

27 79 
21-15 
22 -28 

27-48 
20 96 
22-09 

31.98 
2 ~ 0 6  
22 18 



P = o a 5  psig:  Saturated Liquid: a/g = 1 

T e s t  Tw-Tsat9 4 ' 9  h9 
Height Above Run D i a ,  

NO I i n  = Leading i n  Edge, Liquid O R  Btu/hr ft2 Btu/hr ft2 O R  

2012 

2013 

2014 

2015 

20 16 

2017 

2018 

2019 

2020 

400 1 

4002 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

204.0 
204,O 
204 0 

204.0 
204.0 
204,O 

204.0 
204.0 
204,O 

204.0 
204.0 
204.0 

99.7 
99.7 
99.7 

99.7 
99.7 
9987 

99.7 
99.7 
99.7 

99.7 
99.7 
996 7 

99.7 
99-7 
99.7 

31409 
31489 
31449 

314 0 9 
314.9 
314.9 

6525 6 

4526.6 

6691 4 
4383 e 1 

4297.2 

4590 3 

6691 4 
4268.9 
4557.9 

6525.3 
4311.3 
4574 1 

5796,o 
2891 e 0 
3176.0 

5707.0 
2914.0 
3163 e 0 

5664.0 
3052.0 
3218,o 

2961.0 
3218,o 

5888 0 

3163*0 

6676,5 
6419 a 6 

6617.8 

7734 0 2 

579600 

2984 0 

77T4 Q 

6475.4 

31 98 
2 ~ 0 6  
22 19 

32.79 
21- 48 
22*50 

32 79 
20~92 
22,34 

31 - 98 
22*13 
22-42 

58.13 
28 0 99 
3L85 

57.24 
29,22 
31 * 73 

56 81 
30.61 
32,227 

58,14 
29 a 69 
32*28 

59 0 05 
29- 92 
3L72 

21 a 20 
20 = 39 
24,69 

21,02 
20~56 
24,56 



P = 0.5 psig:  Saturated Liquid: a/g =.I 
~~ 

T e s t  Tw-Tsat, 9'1 hS 
Height Above Run D i a ,  

No. i n .  h a d i n g  -l- Edges Liquid "R Btu/hr f t 2  Btu/hr f t 2  "R 

4003 

4004 

4005 

4006 

4007 

408 

4009 

4010 

4011 

40 12 

40 13 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

LJN2 

*2 

LJN2 

m2 

*2 

*2 

m2 

*2 

LJN2 

m2 

m2 

314 e 9 
314a9 
314 0 9 

314.9 
3144 9 
314 0 9 

31459 
3J-4*9 
314*9 

350.8 
250.8 
250.8 

250~8  
2 5 0 ~ 8  
250-8 

250 -8 
250 -8 
250.8 

250-8 
250.8 
250.8 

250 -8 
250-8 
250.8 

204,O 
204 -0 
204.0 

204,O 
204,O 
204 e 0 

204 0 
204 e 0 
204 0 

6502~3 

7616 7 

6502 3 
6419 e 6 
7616 e 7 

6559.1 
6475 e 4 
7648.0 

5632 I 9 
532769 
6226.3 

5632.9 

6419 6 

5 2 4 ~ 3  
6226 3 

5733.3 
5241 e3 
6348 4 

5632 a 9 
5241.3 
6348 * 4 

5632*9 
5284,6 
6286 4 

5035.0 
4306 e 3 
5345 * 9 

4997.6 
4306 3 
5077.4 

4961 ., 2 
4306 e 3 
5077.4 

20 65 
20-39 
24.18 

20.65 
20039 
24,19 

20 83 
20~56  
24 29 

22.46 
21.24 
24 e 83 

22 e 46 

24-82 
20,90 

22,86 
20 -89 
25.31 

22 a 46 
20 90 
25 e31 

22.46 
21.07 
25.06 

24.67 
2 1 , l O  
26.06 

24.49 
2 L 1 1  
24.88 

22 J 99 
21 a 10 
24,88 



P = 0.5 psig: Saturated Liquid: a/g = 1 

I 
9 ' 9  h, Run D i a ,  He lgh t  Above T e s t  T,-Ts,t, 

No e in .  Leading w e ,  Liquid O R  Btu/hr f t 2  Btu/hr f t 2  "R 
i n ,  

4014 

4015 

40 16 

4017 

4018 

4019 

4020 

5001 

5002 

5003 

50 04 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

718 

5 -518 

5/8 

5 -5/8 

518 

5-5/43 

5/8 

5 -5/8 

5/a 

5 -5/8 

5/8 

5 -5/8 

5/8 

3 

3 

3 

3 

3 

3 

3 
5-518 

1/4 
1-112 
3 

114 
1 4 2  

1/4 
1 4 2  

1/4 
1 -1/2 

z 
J 

3 

3 

*2 

*2 

*2 

LN2 

*2 

*2 

I32 

m2 

LN2 

*2 

J32 

204 a 0 
204.0 
204 0 

204.0 
204,O 
204.0 

9997 
99.7 
99.7 

99.7 
99.7 
99.7 

99.7 
99.7 
99.7 

99.7 
99.7 
99.7 

99.7 
99.7 
99.7 

354.9 
314 * 9 
314.9 

31409 
3140 9 
314 9 

314*9 
314e9 
31-4*9 

314.9 
314.9 
314.9 

4819.7 
4251.7 
5002 e 6 

4889.4 

5077.4 

2921 0 

4251-7 

4747 0 

3481.0 

4932-0 
2966.0 
3613.0 

4631 0 
2921.0 
3545 0 7 

4747- 0 
2954 0 
3481 "0  

4575.0 
2822.0 
3579.0 

6189.6 
6268 e 3 
6609 e 3 

6401 7 
6609 a 3 

6292.2 

T-91.5 

6294 2 
6496 ., 3 

6398 7 
6268 e 3 
6726 e 4 

23.62 
20 e 84 
24,52 

23e96 
20.84 
24.88 

47.61 
29 * 29 
34-91 

49.46 
29075 
36.26 

46 45 
29.29 
35.56 

47.61 
29-63 
34 91 

28 e 30 
35 -89 

45.88 

19 65 
19 90 
20.99 

22 84 
20.33 
20-99 

2 ~ 9 8  

20 e 63 

20 * 32 
19 91 
2 ~ 3 6  

19 0 98 



P = 0.5 ps lg :  Saturated Liquid: a/g = 1 

Test Tw-TSat, q', h, 
Height Above 

in .  

Run D i a ,  
No. i n .  Leading Liquid O R  Btu/hr f t 2  Btu/hr f t 2  O R  

5005 1 1/4 
1 4 2  
3 

5006 1 114 1-112 
3 

5007 1 114 
1 4 2  
3 

5008 1 114 1-112 
3 

5009 1 

5010 1 

5011 1 

5012 1 

5014 1 

114 1-112 
3 

114 1-112 
3 

114 
1 -1/2 
3 

1/4 
1 4 2  
3 

114 1-112 
3 

114 
1 4 2  
3 

5015 1 1/4 
1-1/2 
3 

314.9 

314.9 

250.8 
250.8 
250.8 

250.8 
250.8 
250.8 

250.8 
250.8 
250.8 

250.8 
250.8 
250.8 

250.8 
2 5 0 ~ 8  
250.8 

3140 9 

204.0 
204.0 
204,O 

204.0 
204 0 
204 e 0 

204,O 
204.0 
204.0 

204,O 
204.0 
204,O 

204 e 0 
204.0 
204 0 

6509.3 
6294 e 2 
6726 e 4 

5896.3 
51262 
5349*5 

5589 4 
5126,i 
5306 0 

5894 * 3 
5046. o 
5349.5 

5894 e 3 
5046.0 
5349.5 

5789.0 
5004.0 
5306.0 

5200 e 6 
4112 5 
4340.3 

5450 0 

4340 ., 3 

5450,O 

4340.3 

5009*2 
4112 e 5 
4340.3 

5240.5 
43.38 2 
4340.3 

4138 2 

4396 I) 1 

20 e 67 
3-9.99 
21.36 

23-50 
20 e 44 
21.33 

22.28 

21.56 
20 e 44 

23050 
20.11 
21.33 

23.5 
20 c 12 
PIS33 

23.08 
19 0 95 
21 a 16 

20-16 

26. ~1 
20 e 28 
21.27 

2 6 . n  

21.27 

24.55 
20.16 
21 27 

25.73 
20-28 
21 * 27 

25 49 

21*27 

21g 54 



P = 0,5 psig: Saturated Liquid: a/g = 1 

Run D i a ,  Height Above Test T,-Tsat!, q ' 3  h3 

NO a in.  Leading Edge, Liquid O R  Btu/hr ft2 Btu/hr ft2 "R 
i n .  

5016 

5017 

5018 

5019 

5020 

6001 

6002 

6003 

6004 

6005 

6006 

*2 

m2 

*2 

m2 

m2 

*2 

m2 

*2 

*2 

*2 

m2 

99.7 
99.7 
99.7 

99.7 
99.7 
99.7 

99.7 
99.7 
99.7 

99.7 
99.7 
99.7 

99.7 
99.7 
99.7 

314 * 9 
314-9 
314-9 

314-9 
314*9 

314 * 9 
3x409 
314.9 

314 * 9 
314*9 
31409 

314 9 
314 9 
314 9 

250.8 
250-8 
250.8 

31409 

5810 e 0 
3441.3 
3190.0 

5899 * 3 
3553.4 
3299- 1 

5899 * 3 

3112 e 8 
344~3 

5945.1 
3520 7 
3216.6 

6184.8 
3536 9 
3216.6 

6391 4 
6930 * 5 

6311 9 
6954 5 
7194.1 

6067.0 
6722 6 

6048 I( g 
6722.6 
6807.9 

6048 g 
6722 e 6 

7404.2 

6995 * 7 

6947.6 

5015 e 0 
5445 e 6 
5443 e 6 

58027 
34,51 
31*99 

59.1 
35.64 
33 009 

59*17 
34 52 
31.22 

59 0 62 
35.31 
32.26 

62.32 
35.47 
32 a 26 

20.29 
22.0 
23*51 

20 e 04 
22 08 
22 85 

19 26 
21 35 
22 L 21 

19 20 

21 e 62 

19~20 

21 a 34 

2L34 
22,o 

19 * 99 
21 e 72 
21 70 



P = 0.5 ps ig :  Saturated Liquid: a/g = 1 

Run 
No. 

6007 

6008 

6009 

6010 

6011 

6012 

6013 

6014 

700 1 

7003 

D i a ,  Height Above Test T,-TSat, 9'9 h* 
in .  Leading Edge, Liquid "R Btu/hr f t 2  Btu/hr f t 2  O R  

i n .  

LN2 250 I 8 5015 a 0 19 0 99 
2 5 0 ~ 8  5411.6 21-57 

2 -1/4 718 
3 
3 -112 2 5 0 ~ 8  5443 6 21 70 

LN2 250~8  5015.0 19.99 
250~8  5445 a 6 21,72 3 

3-112 250 -8 5512.5 21.97 

2 -1/4 718 

LN9 204.0 4111 e 5 17- 12 
204.0 4598.1 19.15 

2-114 718 
3 
3 -1/2 204,O 4492 0 18 71 

LN2 204.0 409303 17 05 
204.0 4598 1 19 15 

2 -1/4 7/8 
3 
3-112 204.0 4628.2 19 a 28 

LN2 204,O 4093 * 3 17.05 
204,O 4598.1 19.15 

2 -1/4 718 
3 
3-1/2 204.0 4536.5 18 89 

LN2 99.7 3739.8 37.51 
3161 * o  31.70 3 99.7 

3 -1/2 99-7 3012.4 30 2 1  

2 -1/4 718 

2 -114 718 m2 99.7 3440 -5 34.50 
3 99- 7 3368 * 9 33 0 79 
3-42 99-7 3323 3 33 * 33 

2-1/4 718 m2 99-7 3583.9 35.94 

3 -1/2 99.7 3302 1 33.12 
3 99.7 3325 E 2 33.35 

2-1/4 2 LNp 314.9 6509~6 20~67  
3 31k * 9 6767,4 21 49 
4 314.9 6951.9 22 I) 07 

2-114 2 r;N, 314.9 6468 .. 4 20.54 
3 314 9 6835.6 21-70 
4 314 9 7072 * 9 22 * 46 

2-1/4 2 m2 314.9 6593 a 5 20 0 93 
3 314 0 9 6789 * 9 21 e 56 
4 314 e 9 6905 o 21.93 



180 

P = 0 ~ 5  psig: Saturated Liquid: a/g = 1 

Run 
No. 

70 04 

7035 

7006 

7007 

7008 

70 09 

7010 

7011 

7012 

4021 

4022 

Test T,-T,,t, q', h, 
Height Above 

in .  

D i a ,  
in .  Leading Edge, Liquid O R  Btu/hr f t 2  Btu/hr f t 2  O R  

2-114 2 LN2 250.8 5223 e 8 2 0 ~ 8 2  
3 250~8  5466.1 2179 
4 250 -8 5365 4 3 21.39 

2-114 2 LN2, 250.8 5223,8 20~83  
3 250.8 5332 8 7 2 ~ 2 6  
4 250.8 5466.. 0 21 0 79 

2-114 2 L N ~  250.8 6223.8 20.82 
3 250.8 5398.6 21.52 
4 250 -8 5466.0 218 79 

2-114 2 LN2 204.0 4433.2 21.72 

4 204.0 4594 a 7 22.49 
3 204 e 0 4460 ., 8 21.86 

2-2-14 2 LN2 204.0 4269.0 20 e 92 

4 204.0 4549 2 22.29 
3 204.0 4334 7 21 a 24 

2-114 2 LN2 204.0 4269 .O 20.92 

4 204,O 4596.7 22.57 
3 204.0 4334 * 7 21.24 

2-114 2 U 2  99- 7 3107.8 31 e 17 
3 99.7 3097.1 31.06 
4 99.7 307867 30.87 

2-114 2 *2 99.7 3053 e 0 30 e 52 
3 99.7 3273 5 32.83 
4 99*7 31.73 * 1 31 82 

2-1/4 2 LN2 99.7 3145 6 31- 55 
3 99.7 3232 7 32 9 43 
4 99.7 3173 * 1 31.83 

LH2 400 16354 e 7 40,9 
400 19625 e 8 49.1 

1 5/8 
3 
5 -518 400 20398 e 0 50 - 99 

1 518 m2 300 11045 I) 7 36,8 
41.2 3 300 12373 7 

5 -5/8 30 0 14201 I) 6 47.3 



181 

P = 0.5 psig: Saturated Liquid: a/g = 1 

Run D i a ,  Height Above Test Tw-Tsat., 9 ' 9  h9 
No e in .  Leading Edge> Liquid "R Btu/hr ft2 Btu/hr f t 2  O R  

in. 

4023 

4024 

4025 
4026 

4027 

4028 

2021 

2022 

2023 

2024 

2025 

2026 

1 5 /8 m2 20 0 

5 -5 /8 200 
200 3 

1 5 /8 m2 100 

5 -518 100 
100 3 

Runs made i n  nucleate boiling 1 

100 
100 
100 

200 
200 
200 

100 
100 
100 

10 0 
100 
10 0 

20 0 
200 
2 00 

20 0 
200 
200 

300 
300 
300 

300 
300 
300 

6991 7 
7658 1 
8914 e 3 

4601 e 8 
3504 1 
4334.7 

4754.2 
3486.9 
4308.9 

7466.8 
7658 e 1 
8914.3 

5795 * 4 
3606.1 
3852.2 

3606.1 
3728 * 9 

7666. o 
7807.1 
8845 6 

7666. o 
7807.1 
8540~5 

12319 * 9 
13281 + 8 
13493.9 

11625,8 
12668 7 

5233 - 2 

13274.5 

34 4 96 
38*3 
44.6 

46-0 
35 .o 
43.3 

47.5 
34.9 

37.8 
38.3 
44.6 

57.95 
36-1 
38.5 

5203 
36.1 
37*3 

38,3 
39 * 04 
44.3 

38.3 
39.04 

4301 

42-7 

4Se1 
44 ,* 2 
45.0 

38.8 
42.2 
44,2 
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P = 0.5 psig:  Saturated Liquid: a/g = 1 

T e s t  T,-T sat , 9'9 h9 
Height Above 

in .  

Run D i a ,  
No. i n .  h a d i n g  Edge, Liquid O R  Btu/hr f t 2  Btu/hr f t 2  O R  

2027 
2028 

2029 

2030 

2031 

2032 

2033 

5023 

5024 

5025 

5026 

5027 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

Runs made i n  nucleate boiling 1 
,4 

3/8 
3 
4 - 1/2 

318 
3 
4-1/2 

31% 
3 
4-112 

318 
3 
4 - 1/2 

3/8 
3 
4-1/2 

114 

114 

114 

114 

114 

1-112 
3 

1 4 2  
3 

1-112 
3 

1-1/2 
3 

1-112 
3 

400 
400 
400 

40 0 
400 
400 

30 0 
300 
300 

200 
20 0 
20 0 

100 
100 
100 

100 
100 
100 

10 0 
100 
100 

200 
280 
20 0 

20 0 
200 
200 

300 
3 0  
300 

1 7 2 6 ~ 4  

20207.8 

17065.2 
l9T12 9 
2007l.2 

11625i8 
12866.7 
13167.5 

7365 *4 
7973 2 
8845 e 6 

5156.3 
3606 e 1 
3853 0 2 

5176.1 

3780 a 6 

19456 a 9 

3684 a 2 

5251,2 
3703 * 1 
3840 e 3 

7842-0 
7438 5 
8142 6 

7611 a 4 
n 6 3  0 
7237*9 

125!.t4,0 
12142 5 
13213 2 

43.2 
48,6 
50.6 

4903 

38.8 

43.9 

36,8 
39.4 

51.6 
36.1 
38.5 

51.8 
36,8 
3 7 3  

42-7 

50,2 

42,2 

44.2 

52.5 
37.0 
38.4 

3902 
370 2 
40,7 

38.1 

36.6 

49.8 
40,4 
44,O 

35 -8 



P = 0,5 psig: Saturated Liquid: a/g = 1 

Test T,-TSat9 g ' ,  h, 
Height Above Run D i a ,  

No a in .  Leading i n  Edge, Liquid OR Btu/hr f t 2  Btu/hr f t 2  O R  

LH2 400 16868 II 3 42,l 
400 17572,6 43 09 

3 400 19055* 5 47.6 

5029 1 u 4  
1 4 2  

m2 40 0 17635 0 44,l 
400 18192.8 45.5 

5030 1 1/4 
1 4 2  
3 400 1g2g0 * 7 48.2 

LH2 400 17243 .. 1 43-1 

3 400 r9290 0 7 48,2 
400 17981.3 44.9 

5031 1 1/4 
1 - 4 2  

I32 300 12185.7 40-6 
12384.4 41.3 

5032 1 1/4 
1-112 300 
3 300 13013 -0 43*4 

m 2  20 0 8535-4 42,6 

3 20 0 8142.6 40,7 
20 0 7438 0 5 37-2 

5033 1 1/4 
1 4 2  
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